Abstract:
Disclosed herein are a light emitting display which can compensate for a threshold voltage of a driving switching element, and a method for driving the same. A light emitting display includes a pixel circuit that outputs a driving current corresponding to a data voltage from a data line using a scan signal, a first driving voltage and a second driving voltage; and a light emitting element that emits light by the driving current from the pixel circuit.
Abstract:
The present invention relates to a display device for providing charges discharged from data lines to a battery. The display device includes data lines, scan lines, pixels, a charge storing circuit and a discharging circuit. The pixels are formed in cross areas of the data lines and the scan lines, and driven on the basis of a driving voltage. The charge storing circuit is coupled to at least one data line during a first sub-discharge time of a discharge time, and stores electric charges discharged from the data line during the first sub-discharge time. The discharging circuit is coupled to the data line during a second sub-discharge time of the discharge time, and discharges the data line up to a certain discharge voltage during the second sub-discharge time.
Abstract:
An electroluminescent display device is provided that includes a panel having a plurality of scan lines, a plurality of data lines and a plurality of pixels formed at cross areas of the scan lines and data lines. A driving circuit may be provided to drive scan signals on the scan lines and data signals on the data lines. A frame control device may receive first display data, determine a total amount of current passing through each of the scan lines, and provide second display data to the panel based on the determined total amount of current.
Abstract:
The present invention relates to a light emitting device for preventing cross-talk phenomenon. The light emitting device includes a plurality of pixels and a scan driving circuit. The pixels are formed in cross areas of data lines and scan lines. The scan driving circuit couples at least one scan line to a first voltage source having a first voltage during a first time, couples the scan line to a second voltage source having a second voltage during a second time, and couples the scan line to a third voltage source having a third voltage during a third time. Here, the second voltage is a voltage between the first voltage and the third voltage. The light emitting device discharges the data lines to the same level as data current irrespective of precharge current, and thus cross-talk phenomenon is not occurred to the light emitting device.
Abstract:
An electroluminescent display device is provided that includes a panel having a plurality of scan lines, a plurality of data lines and a plurality of pixels formed at cross areas of the scan lines and data lines. A driving circuit may be provided to drive scan signals on the scan lines and data signals on the data lines. A frame control device may receive first display data, determine a total amount of current passing through each of the scan lines, and provide second display data to the panel based on the determined total amount of current.
Abstract:
The present invention relates to a display device for providing charges discharged from data lines to a battery. The display device includes data lines, scan lines, pixels, a charge storing circuit and a discharging circuit. The pixels are formed in cross areas of the data lines and the scan lines, and driven on the basis of a driving voltage. The charge storing circuit is coupled to at least one data line during a first sub-discharge time of a discharge time, and stores electric charges discharged from the data line during the first sub-discharge time. The discharging circuit is coupled to the data line during a second sub-discharge time of the discharge time, and discharges the data line up to a certain discharge voltage during the second sub-discharge time.
Abstract:
An organic electroluminescent display device includes a power supply unit outputting a driving voltage, a base voltage and a reference voltage, a source driving unit outputting a data voltage, a gate driving unit outputting a positive scan signal and a negative scan signal, a timing control unit controlling the source driving unit and the gate driving unit, and a display unit receiving the driving voltage, the base voltage, the reference voltage, the positive scan signal and the negative scan signal, the display unit including an organic light-emitting diode that has driving currents depending on the data voltage.
Abstract:
Disclosed herein are a light emitting display which can compensate for a threshold voltage of a driving switching element, and a method for driving the same. A light emitting display includes a pixel circuit that outputs a driving current corresponding to a data voltage from a data line using a scan signal, a first driving voltage and a second driving voltage; and a light emitting element that emits light by the driving current from the pixel circuit.
Abstract:
An organic electroluminescent display device includes a power supply unit outputting a driving voltage, a base voltage and a reference voltage, a source driving unit outputting a data voltage, a gate driving unit outputting a positive scan signal and a negative scan signal, a timing control unit controlling the source driving unit and the gate driving unit, and a display unit receiving the driving voltage, the base voltage, the reference voltage, the positive scan signal and the negative scan signal, the display unit including an organic light-emitting diode that has driving currents depending on the data voltage.