摘要:
The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects. In other embodiments, the entire rear door, or each segment of the rear door, can be configured to slide open and closed like a drawer.
摘要:
A flat-panel display is fabricated by a process in which a spacer (24) having a rough face (54 or 56) is positioned between a pair of plate structure (20 and 22). When electrons strike the spacer, the roughness in the spacer's face causes the number of secondary electrons that escape the spacer to be reduced, thereby alleviating positive charge buildup on the spacer. As a result, the image produced by the display is improved. The spacer facial roughness can be achieved in various ways such as providing suitable depressions (60, 62, 64, 66, 70, 74, or 80) or/and protuberances (82, 84, 88, and 92) along the spacer's face.
摘要:
A flat-panel display contains a pair of plate structure (20 and 22) separated by a spacer (24) having a rough face (54 or 56). When electrons strike the spacer, the roughness in the spacer's face causes the number of secondary electrons that escape the spacer to be reduced, thereby alleviating positive charge buildup on the spacer. As a result, the image produced by the display is improved. The spacer facial roughness can be achieved in various ways such as depressions (60, 62, 64, 66, 70, 74, or 80) or/and protuberances (82, 84, 88, and 92). Various techniques are presented for manufacturing the display, including the rough-faced spacer.
摘要:
The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects. In other embodiments, the entire rear door, or each segment of the rear door, can be configured to slide open and closed like a drawer.
摘要:
A spacer structure for a display is disclosed that has a CTE which matches or very closely approximates the CTE of a high quality, desirable glass from which other display structures such as faceplates can be fabricated. The spacer structure is composed of a material that has a CTE that is tailorable within a range that closely matches the CTE range spanned by a variety of readily available high quality, desirable glass from which other display structures such as faceplates can be fabricated. The spacer structure disclosed has a CTE that achieves the foregoing qualities and retains all other properties characterizing requirements for use in displays. Further, the spacer structure disclosed has a CTE that enables great flexibility in the selection of other display components, without having to revamp existing fabrication techniques. Further still, a spacer structure is disclosed that minimizes zero current shift.
摘要:
A process for preparing a superconducting, ceramic material with an increased critical current is described. In this process, the materials used to form the superconducting material are mixed with at least one inorganic salt, and the mixture containing the salt is then heat treated. The salt is then leached from the heat-treated mixture.