Abstract:
A gateway device is provided. The gateway device for relaying communication between an automotive network communication device and an industrial field bus communication device includes: a Controller Area Network (CAN) input unit for receiving a CAN input data frame from an external; and a conversion unit for converting the received CAN input data frame into a Modbus output data frame according to a predetermined method.
Abstract:
A gateway device is provided. The gateway device for relaying communication between an automotive network communication device and an industrial field bus communication device includes: a Controller Area Network (CAN) input unit for receiving a CAN input data frame from an external; and a conversion unit for converting the received CAN input data frame into a Modbus output data frame according to a predetermined method.
Abstract:
A light source apparatus includes a light source module, a light sensor, a data converter, a light source controller and a light source driver. The light source module includes a light source. The light sensor generates sensing data by sensing the amount of light generated from the light source. The data converter converts the sensing data which exceeds a maximum value of reference data of a control range into converted sensing data within the control range. The light source controller generates a control signal for controlling the amount of light from the light source based upon the sensing data corresponding to no more than the maximum value or based upon the converted sensing data. The light source driver drives the light source by providing the light source with a driving signal based upon the control signal.
Abstract:
A portable X-ray detector includes: a detection panel having an incident surface defined on a front surface thereof facing a generator and configured to generate an electrical signal for each position which is proportional to an incident amount of X-rays generated from the generator; a backing housing detachably fixed to a rear surface of the detection panel and having a sealed mounting space defined therein; and a communication module mounted in the mounting space and configured to wirelessly transmit the electrical signal generated from the detection panel.
Abstract:
A driving circuit for a flat panel display device can compensate luminosity deviation according to panel characteristics of a flat display device. To achieve these and other advantages, the driving circuit for a flat panel display device includes a current control circuit for supplying electric current to a panel of a flat display device, a luminescence time detecting circuit for detecting luminescence time of the flat display device and a digital signal processing circuit for controlling the current control circuit on the basis of the luminescence time.
Abstract:
Provided is a liquid crystal display panel having gate drivers. The LCD panel includes a gate line shift circuit setting a gate line scanning order such that the gate lines are sequentially scanned in units of n gate lines with k-1 gate lines between each pair of adjacent gate lines in each unit according to an interleaving method in response to a gate line-on signal received from a timing control unit outside the LCD panel, wherein the LCD panel reproduces source data output from a source driver outside the LCD panel in the gate line scanning order set by the gate line shift circuit. The LCD panel inverts the polarity of a common voltage for every unit of n gate lines, instead of every gate line, thereby reducing power consumption. In addition, since every kth gate line is scanned according to the interleaving method, deterioration of image quality such as a flickering phenomenon can be prevented, which is an advantage of a line inversion driving method.
Abstract:
Provided is a liquid crystal display panel having gate drivers. The LCD panel includes a gate line shift circuit setting a gate line scanning order such that the gate lines are sequentially scanned in units of n gate lines with k−1 gate lines between each pair of adjacent gate lines in each unit according to an interleaving method in response to a gate line-on signal received from a timing control unit outside the LCD panel, wherein the LCD panel reproduces source data output from a source driver outside the LCD panel in the gate line scanning order set by the gate line shift circuit. The LCD panel inverts the polarity of a common voltage for every unit of n gate lines, instead of every gate line, thereby reducing power consumption. In addition, since every kth gate line is scanned according to the interleaving method, deterioration of image quality such as a flickering phenomenon can be prevented, which is an advantage of a line inversion driving method.
Abstract:
A light source apparatus includes a light source module, a light sensor, a data converter, a light source controller and a light source driver. The light source module includes a light source. The light sensor generates sensing data by sensing the amount of light generated from the light source. The data converter converts the sensing data which exceeds a maximum value of reference data of a control range into converted sensing data within the control range. The light source controller generates a control signal for controlling the amount of light from the light source based upon the sensing data corresponding to no more than the maximum value or based upon the converted sensing data. The light source driver drives the light source by providing the light source with a driving signal based upon the control signal.
Abstract:
A display panel includes an array substrate and a color filter substrate. The array substrate has a transparent electrode formed in a pixel area of a base substrate, and a reflective electrode formed on the transparent electrode and in a reflective area of the pixel area. The color filter substrate is combined with the array substrate, and includes a light-blocking pattern defining the pixel area, a photo pattern formed in the reflective area and a color filter formed on the photo pattern of the reflective area and in a transmissive area of the pixel area. Brightness and color reproducibility in the reflective area are adjusted to correspond to those in the transmissive area, and may be easily controlled without additional masks, so that display quality is enhanced and the display substrate is easily manufactured, thereby reducing manufacturing costs and enhancing display productivity.