Abstract:
The present disclosure includes an extraction assembly for use in an automatic espresso brewer. The extraction assembly includes components and methods for controllably extracting espresso beverage from a quantity of brewing substance. The components, assemblies, and methods facilitate improved control and operation of the extraction assembly and improve the reliability of the extraction assembly. The brewing substance is compacted between a pair of opposing pistons. Compacting force is monitored through at least one sensor carried on the extraction assembly to provide a signal to a controller. A predetermined compacting force may be programmed into the system for all brewing cycles or dependent upon the brewing substance used. The pair of pistons operates relative to a brew chamber for use in the espresso extraction process. The pistons provide compacting force and boundaries within the chamber and facilitate removal of a spent brewing substance puck at the end of the brewing cycle. Compacting force is monitored at the start of the brewing process and a predetermined force is required before the brewing process can be started. During the brewing process compacting force can be maintained and controllably adjusted. A variety of sensor methods and locations can be used to detect and monitoring compacting force.
Abstract:
The present disclosure relates to a system for producing beverages or other food products which includes, generally and broadly, controllably dispensing water from the system for use in brewing. Water is introduced to a heated water reservoir (20) heating and subsequent use in a process such as brewing. A thermal expansion system (86) is provided to accommodate water which expands from the reservoir (20) as a result of the heating process. One form of thermal expansion system (86) may include a venturi device (88) which allows the accumulation of water which expands during the heating process and then returns the water to the flow of water during a brew cycle.
Abstract:
The present disclosure relates to apparatus, systems, and methods of use for producing beverages. The apparatus includes components and methods for facilitating beverage production applying water or other liquid in combination with a brewing substance and controlled aeration and pressurization of a mixing vessel or column. The aeration of the water and brewing substance can be accomplished with a vacuum system, a positive pressurization system, and a combination of such systems. The apparatus, systems, and methods can be used with a variety of beverage making devices such as a device which might be used to controllably produce volumes of beverage to a reservoir. The methods include controllable aeration and pressurization of the vessel for brewing which may include controlling extraction time, steep time, active controllable agitation of the brewing substance, as well as other brewing characteristics, features, and actions.
Abstract:
A level sensing apparatus and method of use for use with a beverage server to indirectly sense the level of beverage retained in the server. The server having a body for receiving and retaining beverage with an opening in the body for receiving the level sensing apparatus and beverage there through. The level sensing apparatus includes at least one capacitive sensing probe assembly retained in a housing to separate the probe assembly from contact with beverage. The housing containing the capacitive sensing probe assembly being disposable into the opening in the body of the server. The capacitive sensing probe indirectly sensing at least one level of beverage retained in the beverage server. A separate display assembly is provided and selectively couplable to the capacitive sensing probe assembly. A power source is provided and coupled to the display assembly and to the capacitive sensing probe assembly to provide power to sense and display the level of beverage in the server.
Abstract:
A brewer, system and method for heating water and dispensing heated water for producing a brewed beverage The brewer includes a water reservoir with a heating element associated with the reservoir for heating water retained in the reservoir A brewing substance holder is associated with the reservoir for receiving heated water from the reservoir A temperature sensitive control valve is provided in communication with the reservoir for controllably dispensing heated water from the reservoir to the brewing substance holder The temperature sensitive control valve may be in the form of a passive control valve which uses a bimetallic, magnetic or other material which is responsive to heat The water is placed in the reservoir and heated The elevated temperature of the water will result in operating the heat sensitive control valve to open the control valve and allow water to pass from the reservoir to the brewing substance holder.
Abstract:
The present disclosure relates to a system for producing beverages or other food products which includes, generally and broadly, controllably dispensing water from the system for use in brewing. Water is introduced to a heated water reservoir heating and subsequent use in a process such as brewing. An active thermal expansion system is provided to accommodate water which expands from the reservoir as a result of the heating process. One form of thermal expansion system may include a controllable expansion device accommodates an accumulation of water which expands during the heating process and then returns the water to the flow of water during a brew cycle or drains the water from the system.
Abstract:
A level sensing apparatus and method of use for use with a beverage server to indirectly sense the level of beverage retained in the server. The server having a body for receiving and retaining beverage with an opening in the body for receiving the level sensing apparatus and beverage there through. The level sensing apparatus includes at least one capacitive sensing probe assembly retained in a housing to separate the probe assembly from contact with beverage. The housing containing the capacitive sensing probe assembly being disposable into the opening in the body of the server. The capacitive sensing probe indirectly sensing at least one level of beverage retained in the beverage server. A separate display assembly is provided and selectively couplable to the capacitive sensing probe assembly. A power source is provided and coupled to the display assembly and to the capacitive sensing probe assembly to provide power to sense and display the level of beverage in the server.
Abstract:
A mixing device and method for mixing at least one first ingredient and at least one second ingredient. The device includes a body which has a wall defining a cavity. A first inlet communicates with the cavity for introducing the first ingredient and a second inlet communicates with the cavity for introducing the second ingredient. An outlet is provided in communication with the cavity receiving the mixed first and second ingredient which have been mixed in the cavity. The ingredients are mixed by introducing one ingredient as a stream and the second ingredient as a forcefully introduced stream. An area upstream of the ingredients is provided for mixing ingredients. Once mixed the ingredients must flow through the body before reaching the outlet. Multiple mixing devices can be cascaded to produce additional variations and mixing methods. The device can be in the form of a kit for retrofitting on existing devices such as beverage dispensers.
Abstract:
A molecule capable of potentiating immune responses and modifying existing states of immune responsiveness is described. Also described are compositions containing the molecule, as well as methods for using the molecule and the compositions to enhance immune responses, to enhance DC function, to modify an existing state of immune responsiveness, to immunize individuals, or to treat or inhibit conditions such as allergic asthma.
Abstract:
A mixing device and method for mixing at least one first ingredient and at least one second ingredient. The device includes a body which has a wall defining a cavity. A first inlet communicates with the cavity for introducing the first ingredient and a second inlet communicates with the cavity for introducing the second ingredient. An outlet is provided in communication with the cavity receiving the mixed first and second ingredient which have been mixed in the cavity. The ingredients are mixed by introducing one ingredient as a stream and the second ingredient as a forcefully introduced stream. An area upstream of the ingredients is provided for mixing ingredients. Once mixed the ingredients must flow through the body before reaching the outlet. Multiple mixing devices can be cascaded to produce additional variations and mixing methods. The device can be in the form of a kit for retrofitting on existing devices such as beverage dispensers.