摘要:
An air-fuel ratio sensor comprises a platelike oxygen sensing section made of a solid electrolyte and a heater sheet heating the oxygen sensing section. The oxygen sensing section and the heater sheet are stacked via spacers to constitute a multilayer construction. The heater sheet comprises a first platelike insulating sheet chiefly containing at least one component selected from the group consisting of .alpha.-alumina, steatite and mullite, a filmy resistance element disposed on the first insulating sheet and having a resistance-temperature coefficient within a range of 0.5.times.10.sup.3 to 2.0.times.10.sup.3 ppm/.degree.C., and a second platelike insulating sheet covering the resistance element and chiefly containing at least one component selected from the group consisting of .alpha.-alumina, steatite and mullite.
摘要:
A small-sized highly accurate gas sensor, which is excellent in its reliability of electric connections between contacts and fixtures while being freed from any damage, includes a base member; a detecting unit mounted on the base member for detecting a gas concentration; electrodes mounted on the detecting unit; cylindrical contacts buried integrally in an end portion of the base member; and electric leads interposed between the cylindrical contacts and the electrodes. Contacting fixtures for external lead wires are fitted in and contact the cylindrical contacts so that they are connected to the cylindrical contacts. The cylindrical contacts are formed in their openings with engaging entrances having a smaller diameter than the internal diameter, and the contacting fixtures include elastic contacting portions adapted to be diametrically reduced, when inserted into the cylindrical contacts, than the engaging entrances and expanded, after inserted, to become larger than the engaging entrances and to contact the inner walls of the cylindrical contacts.
摘要:
An air-fuel ratio sensing element comprises a pump cell having at least one pair of pump electrodes thereon, a sensor cell having at least one pair of sensor electrodes thereon, and a gas chamber having two surfaces defined by the pump cell and the sensor cell. Two to five gas holes, each having approximately the same diameter and communicating with the gas chamber, are provided for introducing sensed gas into the gas chamber. The gas holes form their projection images on the surface of the sensor cell which has a sensor electrode thereon and faces the gas chamber. The sensor electrode is shaped such that it is dividable into a plurality of similar subsections defined by virtual lines connecting the geometric centroid of the sensor electrode and the center of the projection image of each gas hole.
摘要:
An exhaust gas side electrode is provided on one surface of a solid electrolytic substrate. A reference gas side electrode is provided on an opposite surface of the solid electrolytic substrate so as to be exposed to a reference gas stored in a reference gas chamber. Each lead of the electrode is connected to a signal output terminal. This sensor satisfies a relationship B/A
摘要翻译:排气侧电极设置在固体电解质基板的一个表面上。 参考气体侧电极设置在固体电解质基板的相对表面上,以暴露于存储在参考气体室中的参考气体。 电极的每个引线连接到信号输出端子。 该传感器满足B / A <0.5的关系,其中“A”表示在传感器启动状态下包括固体电解质基板,电极及其引线的电路的总电阻值,而“B”表示电阻值 的引线在室温下。 一些实施例可以被布置成使得至少一个引线具有位于电极附近的低电阻部分和位于信号输出端子附近的高电阻部分。 例如,与远离电极的位置处的每单位长度的电阻相比,至少一个引线在电极附近的每单位长度的电阻可以更小。
摘要:
An air fuel ratio detecting apparatus by which a stable oxygen ion limit current may be obtained, including a working electrode and a gas diffusion resistance layer laminated in this order on a first surface of a solid electrolyte. An ambient air introduction duct and an electric heater are laminated in this order on a second surface of the electrolyte. The gas diffusion resistance layer is composed of a gas permeation layer and gas shield layer, which is provided on a surface of the gas diffusion resistance layer. Since the surface of the gas permeation layer is covered by the gas shield layer, the gas to be measured enters into the gas diffusion resistance layer from only side faces of gas diffusion resistance layer. A cell is preferably baked in a one-piece manner. A porosity of the gas permeation layer is in a preferable range of from about 2 to about 60%, a thickness of the gas permeation layer is preferably in a range of from about 5 to about 300 .mu.m, and a porosity of the gas shield layer is preferably no more than 10%. Also, the periphery of the cell is preferably covered by a protective layer.
摘要:
A multilayered air-fuel ratio sensor consists of a plurality of substrate layers. At least one heterogeneous boundary layer is interposed between the plurality of substrate layers. The heterogeneous boundary layer has a thickness in a range of 10 to 100 μm. The heterogeneous boundary layer absorbs thermal shocks or any other stresses acting on the substrate layers and stops the growth of cracks.
摘要:
A gas sensor element is inserted into a housing having a base end and is fixed with respect to the housing. Terminal electrodes are provided on the base end of the sensor element. An atmosphere-side cover including an insulator with terminal accommodation holes is provided on the base end of the housing. The insulator also has an element accommodation hole (communicating with the terminal accommodation holes) in which the base end of the sensor element is placed. The insulator has ribs forming inner surfaces defining the element accommodation hole. The rib thickness is smaller than that of the sensor element base end. Metal terminals are at least partially placed in respective terminal accommodation holes and have connecting portions with leads for external electrical connection. The ribs are located between the metal terminals to form spaces between the metal terminals. As the sensor element base end is placed in the element accommodation hole, terminal electrodes on the base end come into contact with the metal terminals and thereby electrically connected with the leads.
摘要:
A gas concentration detector comprises a plate sensor element including a sensing action and a signal output section. A flange section is formed between the sensing section and the signal output section so as to protrude in the lateral direction thereof. A cylindrical housing has an inside space for receiving the sensor element. Powder is disposed in the inside space of the cylindrical housing at a predetermined position adjacent to the flange section so that the sensor element is airtightly fixed to the housing by applying a pressing force on the powder. Furthermore, a cross-sectional area of the signal output section is larger than a cross-sectional area of the sensing section.
摘要:
An oxygen sensor capable of accelerating electrochemical reactions and practically working at a low temperature comprises a solid electrolyte 5, and an outer electrode 31 and an inner electrode 32, provided on the surfaces of the solid electrolyte 5, wherein mixed conductors 11 and 12 capable of adsorbing oxygen molecules and conducting an ionization reaction are provided between the solid electrolyte 5 and the outer electrode 31 and between the solid electrolyte 5 and the inner electrode 32, respectively. The mixed conductors 11 and 12 are porous and have a higher oxygen ion conductivity than that of the solid electrolyte 5 and an electron conductivity substantially equivalent to the oxygen ion conductivity and are made of a fluorite-type oxide or a perovskite-type oxide.
摘要:
A gas sensor element is inserted into a housing having a base end and is fixed with respect to the housing. Terminal electrodes are provided on the base end of the sensor element. An atmosphere-side cover including an insulator with terminal accommodation holes is provided on the base end of the housing. The insulator also has an element accommodation hole (communicating with the terminal accommodation holes) in which the base end of the sensor element is placed. The insulator has ribs forming inner surfaces defining the element accommodation hole. The rib thickness is smaller than that of the sensor element base end. Metal terminals are at least partially placed in respective terminal accommodation holes and have connecting portions with leads for external electrical connection. The ribs are located between the metal terminals to form spaces between the metal terminals. As the sensor element base end is placed in the element accommodation hole, terminal electrodes on the base end come into contact with the metal terminals and thereby electrically connected with the leads.