Abstract:
A cleaning apparatus with cleaning rings for cleaning cylindrical bodies, preferably for the quartz cladding tubes in UV disinfection units, especially in UV disinfection sluices for waste water, which in addition to an axially parallel longitudinal movement over the outside surfaces perform an additional angularly limited and alternating rotational movement The object of the invention is a cleaning apparatus with cleaning rings for cleaning cylindrical bodies, preferably for the quartz cladding tubes in UV disinfection units, especially in UV disinfection sluices for waste water, which in addition to an axially parallel longitudinal movement over the outside surfaces perform an additional angularly limited and alternating rotational movement. According to the inventive idea the cleaning rings are moved slowly in an axially parallel way over the quartz cladding tubes, with the same moving additionally in an angularly limited and with suitable speed alternatingly about a rotational axis for reinforcing the cleaning performance and especially for the better penetration of troughs at places that are out of round. This manner of movement of the cleaning rings necessitates a considerably lower amount of mechanical complexity at virtually the same cleaning performance than would be necessary in a full and uninterrupted rotation of the cleaning rings. Compared with the usual rigid wiper rings which are moved back and forth in an axially parallel manner on the quartz cladding tubes without any rotational movement, the cleaning performance with the cleaning rings according to the inventive idea is considerably better.
Abstract:
There is described a fluid treatment system comprising an array of independent fluid treatment reactors. The reactors are arranged in a manner whereby a flow of fluid may be passed through the array in a substantially helical direction. The fluid treatment system is capable of treating large volumes of fluid (e.g., water) while requiring a relatively small foot print. In essence, the present fluid treatment system concentrates a relatively large number of radiation sources in a relatively small amount of space resulting in the ability to treat large volumes of fluid (e.g., water).
Abstract:
A sectoral ring brush with inside trimming for keeping clear and/or cleaning cylindrical bodies, preferably quartz cladding tubes in UV disinfection units, especially in UV disinfection sluices for the disinfection of waste water, characterized in that the sectoral ring brush consists of sectoral elements whose trimming can be integrated prior to the installation in a housing, with the sectoral element being fastened individually or in a connected fashion, e.g. by connecting bridges on the circumference, in a ring-shaped housing.
Abstract:
The present invention provides a radiation source module for use in a fluid treatment system. In one embodiment, the module comprises: a substantially elongate first support member having a longitudinal first axis; and a first pair of radiation source assemblies extending from the first support member, each radiation source assembly comprising a radiation source; wherein the first pair of radiation source assemblies is oriented such that a second axis extending through a center point of each radiation source assembly is disposed at an angle with respect to the first axis. In another embodiment, the module comprises a substantially elongate first support member having a longitudinal first axis; and a first column of radiation source assemblies extending from the first support member, and a second column of radiation source assemblies extending from the first support member, each radiation source assembly comprising a radiation source;the first column of radiation source assemblies and the second column of radiation source assemblies disposed adjacent one another.
Abstract:
A radiation source module comprising a support member, a radiation source assembly connected to the support member, the radiation source assembly comprising at least one elongate radiation source having a source longitudinal axis and a module-to-surface seal disposed on a first elongate surface of the module, the first elongate surface comprising a first longitudinal axis transverse to the source longitudinal axis, the seal operable to provide a substantially fluid tight seal between the first surface and a second surface which is adjacent to the first surface. A fluid treatment system employ the radiation source module is also described.
Abstract:
A cleaning formulation comprising a cleaning agent, a particulate clay material and an aqueous carrier. The formulation has a pH less than about 4.0 and is characterized by at least a 90% reduction in viscosity at 25null C. at a shear rate of up to about 0.10 snull1. The cleaning formulation is thixotropic and has a highly desirable combination of acid stability, temperature stability, electrolyte stability and ultraviolet radiation stability.
Abstract:
A fluid treatment system having an inlet, an outlet, and a fluid treatment zone therebetween. The zone has an array of rows of radiation source assemblies. Each radiation source assembly has a longitudinal axis disposed at an oblique angle with respect to a direction of fluid flow. Each row has a plurality of radiation source assemblies in spaced relation in a direction transverse to the direction of fluid flow, to define a gap through which fluid may flow between an adjacent pair of assemblies. Preferably, all rows in the array are staggered with respect to one another in a direction orthogonal to the direction of fluid flow, such that the gap between an adjacent pair of radiation source assemblies in an upstream row of assemblies is partially or completely obstructed in the direction of fluid flow by a serially disposed radiation source assembly in at least one downstream row.
Abstract:
A fluid treatment system having an inlet, an outlet, and a fluid treatment zone therebetween. The zone has an array of rows of radiation source assemblies. Each radiation source assembly has a longitudinal axis disposed at an oblique angle with respect to a direction of fluid flow. Each row has a plurality of radiation source assemblies in spaced relation in a direction transverse to the direction of fluid flow, to define a gap through which fluid may flow between an adjacent pair of assemblies. Preferably, all rows in the array are staggered with respect to one another in a direction orthogonal to the direction of fluid flow, such that the gap between an adjacent pair of radiation source assemblies in an upstream row of assemblies is partially or completely obstructed in the direction of fluid flow by a serially disposed radiation source assembly in at least one downstream row.
Abstract:
A cleaning formulation for removing materials from a surface (e.g., an optical surface, a metal surface and the like), the cleaning formulation comprising from about 0.5 to about 60 weight percent of a compound derived from urea and a phosphorus-containing acid, together with a carrier therefor. A method for removing fouling materials from a surface is also described. The cleaning formulation may be used to remove materials, inter alia, from optical radiation surfaces, optical lens surfaces (e.g., a contact lens) and the like.
Abstract:
A fluid treatment system for placement in a flanged pipe fluid conveyance system. The fluid treatment system comprises a flanged ductile iron pipe fitting. The ductile iron pipe fitting comprises: a first flanged opening and a second flanged opening in substantial alignment to define a flow axis aligned substantially parallel to a direction of fluid flow through the first opening and the second opening; and a third flanged opening comprising a first cover element. The first cover element has connected thereto at least one radiation source assembly comprising at least one elongate radiation source having a longitudinal axis substantially transverse to the flow axis. In its preferred form, the fluid treatment system may be advantageously utilized to treat fluid such as water, e.g., municipal waste water, municipal drinking water and the like. The fluid treatment system is particularly advantageous since it utilizes a standard ductile iron pipe fitting and thus, can be readily nullsplicednull into existing piping systems. This facilitates installation of the system and also allows for a significant lowering of manufacturing costs of the system.