Abstract:
The present invention discloses an optical system for performing a laser photorefractive keratectomy operation on a cornea for vision correction. The optical system comprises a laser source emitting a laser beam. The optical system also includes a beam processing subsystem for receiving and processing the laser beam for generating a processed laser beam suitable for performing the keratectomy operation. The optical system further includes an energy delivery subsystem including a continuous energy-delivery control device which may include time-varying movable slits, rotating diaphragms, or combination of lens system with moving screen, for optically controlling the energy delivered to different areas of the cornea by the processed laser beam for performing the vision correction.
Abstract:
A new technique is presented which exploits AC Hall effect in the characterization of layered semiconductor structures. The method involves the use of laser signals by means of optical fibers in the presence of a DC magnetic bias field. Upon incidence the polarization of the optical signal is rotated via a Lorentz force due to the AC Hall effect. As such, the reflected waves carry informations on the Hall mobility of the charge carriers. The calculations show that AC Hall reflection coefficient warrants sufficient intensity to be measured. Our theory is complete in the sense that depth profiling has been explicitly incorporated in the formulation.
Abstract:
The present invention discloses a frequency tunable filter which includes an electromagnetic (E-M) wave propagation line which includes a microstrip and a ground plane in the substrate for transmitting a sequence of E-M signals via the propagation line. The E-M wave propagation line includes a frequency tuning mechanism, i.e., the magnetic layer, which is capable of utilizing a ferromagnetic anti-resonance frequency response to the E-M signals transmitted via the propagation line for controlling and frequency tuning the E-M signal transmission. In one of the preferred embodiments, the E-M wave propagation line includes a microstrip forming on the top surface of a dielectric or semiconductor substrate for receiving and transmitting the E-M signals and a ground plane forming on the bottom surface of the semiconductor substrate. And, the frequency tuning mechanism includes a ferromagnetic layer formed in the substrate between the microstrip and the ground plane.