Abstract:
The apparatus for detecting surface defects of a glass substrate, having a dark field optical system, includes: a first photographing device for photographing first image; a second photographing for photographing second image; a dark field illumination system disposed below the glass substrate for serving as a dark field illumination; and a detection signal processor operating coordinates of a defect position on the first image and the second image, wherein the first photographing device and the second photographing device form photographing areas in the shape of lines which are not parallel to at least the transferring direction of the glass substrate, form photographing areas for a top surface of the glass substrate to be overlapped by each other and form photographing areas for a bottom surface of the glass substrate differently from each other.
Abstract:
The present invention relates to an apparatus for detecting particles on a flat glass, which detects particles adhered to the flat glass having both sides such as a surface A and a surface B, comprising: a surface A laser light irradiating device for irradiating laser light of a first wavelength polarized in a direction S at a first angle based on a surface A normal vector toward the surface A in an upper part of the surface A of the flat glass; a surface A photographing device for taking a picture of a point where the laser light irradiated by the surface A laser light irradiating device is irradiated on the surface A of the flat glass; a surface B laser light irradiating device for irradiating laser light of a second wavelength toward the surface A at a second angle smaller than the first angle based on the surface A normal vector in the upper part of the surface A of the flat glass, and wherein the irradiated laser light is mostly transmitted in thickness direction of the flat glass; a surface B photographing device for taking a picture of a point where the laser light irradiated by the surface B laser light irradiating device is irradiated on the surface B of the flat glass; and a detection signal processor for analyzing video images inputted from the surface A photographing device and the surface B photographing device, and deciding from which photographing device the particles are more clearly outputted, to decide on a surface to which the particles adhere.
Abstract:
Glass substrate cutting apparatuses using lasers are disclosed, where a laser cutting head is moved. A glass substrate cutting apparatus includes two parts for a laser cutting head: heavy laser beam generators fixed to respective ends of a gantry structure moving in parallel along two gantry stages located on either side of a cutting table, and relatively lightweight laser irradiation heads moving horizontally in parallel with the gantry structure. The glass substrate cutting apparatus includes a cutting table for maintaining a glass substrate in a horizontal state; biaxial gantry stages for moving a gantry structure along the cutting table; the gantry structure moving in between an upper part of the biaxial gantry stages; laser beam generators fixed to respective ends of the gantry structure for oscillating the laser; and laser irradiation heads that move horizontally on respective ends of the gantry structure and irradiate the laser upon the glass substrate.
Abstract:
A noncontact type suction gripping device suitable for lifting a flat object in a noncontact manner includes a housing section including a pressing part which forms a closed surface when being placed to closely face one surface of a flat object, an R part which extends from the pressing part to be convexly rounded when viewed from the flat object, a sidewall part which is formed such that at least a portion thereof linearly extends from the R part in a direction facing away from the flat object, and an air inlet part which is connected to the sidewall part to introduce air, supplied from the outside, into the housing section; and a nozzle section including a nozzle tip which is separated from an inner surface of the sidewall part by a predetermined gap such that air supplied through the air inlet part can be discharged toward the perpendicular direction on the flat object, and an inclined surface which is formed to have a gradually decreasing diameter from the nozzle tip toward the air inlet part, the nozzle section having a funnel-shaped configuration and being inserted into a space defined in the housing section.
Abstract:
The present invention relates to an apparatus for detecting particles in flat glass and a detecting method using the same. The present invention provides an apparatus for detecting particles in flat glass, comprising: an illumination unit which is installed in one region selected from upper and lower regions on the basis of flat glass; a first polarizer which is installed between the illumination unit and the flat glass, and has a first polarization direction; a first camera and a second camera which are installed in the opposite direction where the illumination unit is installed on the basis of the flat glass; a second polarizer which is equipped in a space between the first camera and the flat glass, and has a polarization direction in the range of 0° to 20° that is different from the polarization direction of the first polarizer; a fourth polarizer which is equipped in a space between the second camera and the flat glass, and has a polarization direction in the range of 70° to 90° that is different from the polarization direction of the first polarizer; and a processor which receives images obtained from the first camera and the second camera, and decides whether defects are benign particles or malignant particles.
Abstract:
Disclosed herein are apparatuses for breaking a glass panel unified with a process table which break the glass panel formed with scribing lines along the scribing lines by irradiating laser beams. The apparatuses for breaking a glass panel unified with a process table to conduct breaking operations of the glass panel after scribing work of the glass panel as one body with the process table are installed on both sides of the process table included in a transfer-type cutting head laser cutting device. Each apparatus for breaking the glass panel unified with the process table comprises: breaking bars for cutting the glass panel by applying pressure to cutting sections of the glass panel; rotating devices for rotating the breaking bars by combining with both ends of the breaking bars; and a support equipped with cylinders for vertically moving the rotating devices in both sections.
Abstract:
The present invention relates to an apparatus for detecting particles in flat glass and a detecting method using the same. The present invention provides an apparatus for detecting particles in flat glass, comprising: an illumination unit which is installed in one region selected from upper and lower regions on the basis of flat glass; a first polarizer which is installed between the illumination unit and the flat glass, and has a first polarization direction; a first camera and a second camera which are installed in the opposite direction where the illumination unit is installed on the basis of the flat glass; a second polarizer which is equipped in a space between the first camera and the flat glass, and has a polarization direction in the range of 0° to 20° that is different from the polarization direction of the first polarizer; a fourth polarizer which is equipped in a space between the second camera and the flat glass, and has a polarization direction in the range of 70° to 90° that is different from the polarization direction of the first polarizer; and a processor which receives images obtained from the first camera and the second camera, and decides whether defects are benign particles or malignant particles.
Abstract:
Disclosed herein are apparatuses for breaking a glass panel unified with a process table which break the glass panel formed with scribing lines along the scribing lines by irradiating laser beams. The apparatuses for breaking a glass panel unified with a process table to conduct breaking operations of the glass panel after scribing work of the glass panel as one body with the process table are installed on both sides of the process table included in a transfer-type cutting head laser cutting device. Each apparatus for breaking the glass panel unified with the process table comprises: breaking bars for cutting the glass panel by applying pressure to cutting sections of the glass panel; rotating devices for rotating the breaking bars by combining with both ends of the breaking bars; and a support equipped with cylinders for vertically moving the rotating devices in both sections.
Abstract:
The present invention relates to an apparatus for detecting particles on a glass surface and a method thereof, and more specifically, to an apparatus for detecting particles on a glass surface and a method thereof for exactly inspecting particles which may be created on a glass surface where micro circuits are deposited. The apparatus for detecting the particles on the glass surface in accordance with the present invention comprises laser beam irradiators for detecting particles on a glass substrate on upper and lower sides of the glass substrate at certain intervals, respectively, and wherein the irradiators are configured so that beams emitted from the laser beam irradiators can be irradiated in a direction vertical to a transferring direction of the glass substrate, thereby exactly detecting particles detached to the glass surface without exception.
Abstract:
The present invention relates to an apparatus for detecting particles on a glass surface and a method thereof, and more specifically, to an apparatus for detecting particles on a glass surface and a method thereof for exactly inspecting particles which may be created on a glass surface where micro circuits are deposited. The apparatus for detecting the particles on the glass surface in accordance with the present invention comprises laser beam irradiators for detecting particles on a glass substrate on upper and lower sides of the glass substrate at certain intervals, respectively, and wherein the irradiators are configured so that beams emitted from the laser beam irradiators can be irradiated in a direction vertical to a transferring direction of the glass substrate, thereby exactly detecting particles detached to the glass surface without exception.