摘要:
A perpendicular magnetic recording medium 100 has, over a substrate, at least a magnetic recording layer 122 with a granular structure in which nonmagnetic grain boundaries are formed between magnetic grains continuously grown into a columnar shape. The magnetic grains of the magnetic recording layer 122 contain Co, Cr, and Pt. The magnetic recording layer 122 contains at least one oxide selected from a group A including SiO2, TiO2, and Cr2O3, at least one oxide selected from a group B consisting of oxides each having a larger Gibbs free energy ΔG than the group A, and a reducing agent adapted to reduce the oxides of the group B.
摘要翻译:垂直磁记录介质100在衬底上具有至少具有粒状结构的磁记录层122,其中在连续生长成柱状的磁性颗粒之间形成非磁性晶界。 磁记录层122的磁性颗粒含有Co,Cr和Pt。 磁记录层122包含选自包括SiO 2,TiO 2和Cr 2 O 3的组A中的至少一种氧化物,选自B组的氧化物中的至少一种氧化物,其组分比A组具有更大的Gibbs自由能&Dgr; G, 以及适合于还原B族氧化物的还原剂。
摘要:
An object of the present invention is to provide a perpendicular magnetic recording medium the SNR of which is improved by reducing noise thought to be due to an auxiliary recording layer so that a higher recording density can be achieved, and a method of manufacturing the same.In order to achieve the above object, a representative configuration of a perpendicular magnetic recording medium 100 according to the present invention includes, on a base, at least a magnetic recording layer 122 having a granular structure in which a non-magnetic grain boundary portion is formed between crystal particles grown in a columnar shape; a non-magnetic split layer 124 disposed on the magnetic recording layer 122 and containing Ru and oxygen; and an auxiliary recording layer 126 that is disposed on the split layer 124 and that is magnetically approximately continuous in an in-plane direction of a main surface of the base 110.
摘要:
[Object] To achieve a high coercive force (Hc) and low-noise characteristics (high S/N ratio) through realization of both segregation of SiO2 and high perpendicular magnetic anisotropy by providing a two-layer structure having magnetic recording layers with different properties.[Solution] A magnetic disk for use in perpendicular magnetic recording, having at least an underlayer 5, a first magnetic recording layer 6, and a second magnetic recording layer 7 on a substrate in this order. The first magnetic recording layer 6 and the second magnetic recording layer 7 are each a ferromagnetic layer of a granular structure containing a nonmagnetic substance forming grain boundary portions between crystal grains containing at least Co (cobalt). Given that the content of the nonmagnetic substance in the first magnetic recording layer 6 is A mol % and the content of the nonmagnetic substance in the second magnetic recording layer 7 is B mol %, A>B.
摘要:
A perpendicular magnetic recording medium includes a substrate, a soft magnetic layer, a pre-underlayer, an underlayer, and a main recording layer serving as a magnetic recording layer. The pre-underlayer contains seed crystal grains that serve as a base for crystal grains of the underlayer, and an addition substance that is added between the seed crystal grains and composed of an element having an atomic radius smaller than that of an element forming the seed crystal grains.
摘要:
By improving sliding durability while ensuring a high SNR, an improvement in reliability and a further increase in recording density are to be achieved.The structure of a method of manufacturing a perpendicular magnetic recording medium according to the present invention includes: a main recording layer forming step of forming, on a substrate, at least a main recording layer formed of magnetic particles having a CoCrPt alloy as a main component and a non-magnetic grain boundary part having an oxide as a main component; a split layer forming step of forming a split layer having a Ru alloy or a Co alloy as a main component on the main recording layer; a first heating step of performing a heat treatment on the substrate after the split layer forming step; an auxiliary recording layer forming step of forming an auxiliary recording layer formed of a material having CoCrPt as a main component after the first heating step; a second heating step of performing a heat treatment on the substrate after the auxiliary recording layer forming step; and a protective layer forming step of forming a protective layer having carbon as a main component by CVD after the second heating step.
摘要:
A magnetic recording medium (10) has a substrate (12) and a perpendicular magnetic recording layer (30) formed over the substrate (12). The perpendicular magnetic recording layer (30) has a granular layer (20) in which a magnetic signal is recorded and a continuous film layer (24) magnetically coupled to the granular layer (20). The continuous film layer (24) has hard magnetic portions (204) formed in positions corresponding to the recording regions where magnetic signals are recorded in the granular layer (20) and magnetic shield portions (202) formed between the hard magnetic portions (204), each having a magnetization curve whose slope is larger than those of the hard magnetic portions in the region where the applied magnetic filed is zero when the magnetization curve is measured, and each having a residual magnetic polarization smaller than those in the hard magnetic portions.
摘要:
By improving sliding durability while ensuring a high SNR, an improvement in reliability and a further increase in recording density are to be achieved.The structure of a method of manufacturing a perpendicular magnetic recording medium according to the present invention includes: a main recording layer forming step of forming, on a substrate, at least a main recording layer formed of magnetic particles having a CoCrPt alloy as a main component and a non-magnetic grain boundary part having an oxide as a main component; a split layer forming step of forming a split layer having a Ru alloy or a Co alloy as a main component on the main recording layer; a first heating step of performing a heat treatment on the substrate after the split layer forming step; an auxiliary recording layer forming step of forming an auxiliary recording layer formed of a material having CoCrPt as a main component after the first heating step; a second heating step of performing a heat treatment on the substrate after the auxiliary recording layer forming step; and a protective layer forming step of forming a protective layer having carbon as a main component by CVD after the second heating step.
摘要:
An object of the present invention is to provide a method of manufacturing a perpendicular magnetic recording medium (100) in which both of a coercive force Hc and reliability can be achieved at a higher level even with heating at the time of forming a medium protective layer (126) and to provide the perpendicular magnetic recording medium (100). Thus, in a typical structure of the present invention, in the method of manufacturing the perpendicular magnetic recording medium (100) including at least a magnetic recording layer (122b), which is a ferromagnetic layer of a granular structure in which a non-magnetic grain boundary part is formed between crystal grains each grown in a columnar shape, and a medium protective layer (126) with carbon hydride as a main component in this order on a disk base (110), the method includes a magnetic recording layer forming step of forming the magnetic recording layer (122b) so that the grain boundary part contains oxides of a plurality of types and a medium protective layer forming step of forming the medium protective layer (126) in a state where the disk base (110) having the magnetic recording layer (122b) formed thereon is heated at 160 to 200 degrees Celsius.
摘要:
An object of the present invention is to provide a perpendicular magnetic recording medium 100 including a magnetic recording layer 122, the medium in which a particle diameter of crystal grains in the magnetic recording layer 122 of a two-layer structure is so designed as to improve an SNR while a high coercive force is maintained. In a method of manufacturing the perpendicular magnetic recording medium 100 according to the present invention, the perpendicular magnetic recording medium 100 includes at least a ground layer 118, a first magnetic recording layer 122a, and a second magnetic recording layer 122b in this order on a disk base 110; the first magnetic recording layer 122a and the second magnetic recording layer 122b are ferromagnetic layers each having a granular structure in which a grain boundary part made of a non-magnetic substance is formed between crystal grains each grown in a columnar shape, and A
摘要:
A perpendicular magnetic recording medium includes a substrate, a soft magnetic layer, a pre-underlayer, an underlayer, and a main recording layer serving as a magnetic recording layer. The pre-underlayer contains seed crystal grains that serve as a base for crystal grains of the underlayer, and an addition substance that is added between the seed crystal grains and composed of an element having an atomic radius smaller than that of an element forming the seed crystal grains.