Abstract:
A liquid crystal display device comprising a liquid crystal layer including liquid crystal molecules provided between a first substrate and a second substrate; pixels forming a display area; electrodes for applying a voltage across the liquid crystal layer within each of the pixels; a plurality of domain regulating structures for dividing orientations of the liquid crystal molecules and forming multiple domains within each of the pixels, when a predetermined voltage is applied across the liquid crystal layer within each of the pixels. The device also includes a structure which is formed in an outer area located next to the display area, but that does not overlap the display area, and is substantially the same as at least one of the plurality of domain regulating structures.
Abstract:
A liquid crystal display device includes a panel having pixel electrodes arranged at intersections of a plurality of signal lines via switching elements for transmitting display data and a plurality of scanning lines for transmitting control signals, and a control circuit for controlling the panel. The liquid crystal panel is divided into first pixel regions and second pixel regions adjacent to the first pixel regions. The control circuit carries out impulse driving in which the control signals transmitted to each of the scanning lines are activated two times in one frame period for displaying an image. The control circuit writes the display data in either one of the pixel regions and writes reset data in the other pixel regions when the control signals are activated once of the two times. By writing the reset data in the pixel regions, the display data written in an immediately preceding frame are reset. In consecutive frames, the display data written in the pixel regions are always reset in one frame period. Therefore, blurring in a moving image can be alleviated. Since writing the display data and the reset data is carried out separately in the first pixel regions and in the second pixel regions, flicker is prevented from occurring in a display screen.
Abstract:
A liquid crystal display device including a pair of substrates sandwiching liquid crystal molecules, a plurality of gate bus lines, and a plurality of data bus lines, with each of the data bus lines extending to intersect the gate bus lines and bending in a zigzag manner. A plurality of pixels are formed in areas enclosed by the data and gate bus lines, with a plurality of pixel electrodes, each covering a substantial area of one of the pixels. A plurality of domain regulating structures for regulating orientation directions of the liquid crystal molecules and for forming multiple domains are formed in each of the pixels. At least one of the domain regulating structures bends along a first side edge of the pixel electrode and domains are divided in accordance with the bending of the domain regulating structure.
Abstract:
In a liquid crystal display device, liquid crystal molecules are oriented in a vertical direction to the first substrate and the second substrate by the first molecule orientation film and the second molecule orientation film, respectively, in a non-driving state. A structural pattern is formed so as to extend in a first direction parallel to a surface of the liquid crystal layer and so as to form, in a driving state, an electric field periodically changing in a second direction that is parallel to the liquid crystal layer and vertical to the first direction. The liquid crystal molecules substantially tilt in the first direction in the driving state.
Abstract:
The invention relates to a liquid crystal display based on an MVA mode of multi-division alignment in which alignment states of liquid crystal molecules having a negative dielectric anisotropy are made different from each other, and provides a liquid crystal display in which a drop in transmittance is suppressed and response characteristics are improved. The liquid crystal display is constructed so as to include a pair of substrates having a predetermined cell gap and arranged opposite to each other, vertical alignment films formed between the pair of substrates, a liquid crystal layer sealed between the vertical alignment films and having a negative dielectric anisotropy, an alignment regulating structural member arranged on at least one of the pair of substrates, for regulating a total alignment direction of liquid crystal molecules in the liquid crystal layer at a time of voltage application, and a cured material provided in the liquid crystal layer and including a liquid crystal skeleton for tilting the liquid crystal molecules.
Abstract:
In a vertically aligned liquid crystal display device for controlling liquid crystal molecules alignment in voltage application by providing linear structures or linear slits consisting of a plurality of constituent units to at least one of a pair of substrates having an electrode thereon, there is provided alignment controlling means for forming an alignment singular point s=−1 of liquid crystal molecules at an intersecting point between the structures on the pixel electrode or the slits in the electrode and an edge of a pixel electrode on one of the substrates.
Abstract:
The invention relates to a liquid crystal display based on an MVA mode of multi-division alignment in which alignment states of liquid crystal molecules having a negative dielectric anisotropy are made different from each other, and provides a liquid crystal display in which a drop in transmittance is suppressed and response characteristics are improved. The liquid crystal display is constructed so as to include a pair of substrates having a predetermined cell gap and arranged opposite to each other, vertical alignment films formed between the pair of substrates, a liquid crystal layer sealed between the vertical alignment films and having a negative dielectric anisotropy, an alignment regulating structural member arranged on at least one of the pair of substrates, for regulating a total alignment direction of liquid crystal molecules in the liquid crystal layer at a time of voltage application, and a cured material provided in the liquid crystal layer and including a liquid crystal skeleton for tilting the liquid crystal molecules.
Abstract:
In a liquid crystal display device, liquid crystal molecules are oriented in a vertical direction to the first substrate and the second substrate by the first molecule orientation film and the second molecule orientation film, respectively, in a non-driving state. A structural pattern is formed so as to extend in a first direction parallel to a surface of the liquid crystal layer and so as to form, in a driving state, an electric field periodically changing in a second direction that is parallel to the liquid crystal layer and vertical to the first direction. The liquid crystal molecules substantially tilt in the first direction in the driving state.
Abstract:
A liquid crystal display device includes a panel having pixel electrodes arranged at intersections of a plurality of signal lines via switching elements for transmitting display data and a plurality of scanning lines for transmitting control signals, and a control circuit for controlling the panel. The liquid crystal panel is divided into first pixel regions and second pixel regions adjacent to the first pixel regions. The control circuit carries out impulse driving in which the control signals transmitted to each of the scanning lines are activated two times in one frame period for displaying an image. The control circuit writes the display data in either one of the pixel regions and writes reset data in the other pixel regions when the control signals are activated once of the two times. By writing the reset data in the pixel regions, the display data written in an immediately preceding frame are reset. In consecutive frames, the display data written in the pixel regions are always reset in one frame period. Therefore, blurring in a moving image can be alleviated. Since writing the display data and the reset data is carried out separately in the first pixel regions and in the second pixel regions, flicker is prevented from occurring in a display screen.
Abstract:
In a vertically aligned liquid crystal display device for controlling liquid crystal molecules alignment in voltage application by providing linear structures or linear slits consisting of a plurality of constituent units to at least one of a pair of substrates having an electrode thereon, there is provided alignment controlling means for forming an alignment singular point s=−1 of liquid crystal molecules at an intersecting point between the structures on the pixel electrode or the slits in the electrode and an edge of a pixel electrode on one of the substrates.