Abstract:
A composition for electromagnetic wave suppression and heat radiation includes: a matrix composed of a high molecular material or a low molecular material; and a magnetic particle filled in the matrix upon mixing a magnetic powder having a relation of {(tap density)/density}≧0.58 with the matrix.
Abstract:
A composition for electromagnetic wave suppression and heat radiation includes: a matrix composed of a high molecular material or a low molecular material; and a magnetic particle filled in the matrix upon mixing a magnetic powder having a relation of {(tap density)/density}≧0.58 with the matrix.
Abstract:
The formation of a gap in a magnetic head core or the junction of a thin magnetic film of a metal with an oxide substrate of a magnetic head made of a composite of a thin magnetic film of a metal with an oxide material are conducted by the thermal diffusion between gold layers themselves at a low temperature. Then, chromium or titanium is provided between the gold layer and the junction surface to prevent deterioration of magnetic characteristics and generation of a false gap and, at the same time, to heighten the junction strength. The thermal diffusion between the gold layers themselves is effected at a temperature lower than that of glass fusion to suppress the deterioration of magnetic characteristics, distortion caused by thermal expansion, and diffusion reaction on the interface. The chromium or titanium layer works to maintain function strength between the thin magnetic layer or the oxide substrate and the gold layer.
Abstract:
A magnetic head is disclosed which is formed by magnetic core halves constituted of an oxide magnetic material and soft magnetic thin films, wherein the boundary surfaces between the thin films and the oxide magnetic material runs substantially parallel to the gap surface in the vicinity of the magnetic gap. The soft magnetic thin films are soft magnetic thin films of the Fe-Ga-Si system consisting essentially of Fe, Ga and Si.
Abstract:
A magnetic head comprising a pair of magnetic core halves each having a magnetic core film sandwiched between a pair of non-magnetic substrates, said magnetic core halves being abutted to each other with the end faces of the magnetic core films facing each other, with a magnetic gap being defined in an interface of abutment of said magnetic core films, wherein the magnetic core film is of a laminated magnetic film structure comprising a plurality of laminated magnetic film units laminated with insulating films in-between. Each laminated magnetic film unit in turn comprises a plurality of magnetic films with non-magnetic films in-between, with the magnetic films being magnetostatically connected to one another at film ends. By employing the laminated magnetic film unit for the magnetic core film, it becomes possible to markedly increase the magnetic permeability in a direction normal to the gap depth when anisotropy is applied in the gap depth direction. With the above magnetic head, a plurality of the magnetic film units are laminated with insulating films in-between for suppressing eddy current losses in the high frequency region. As a result, excellent electro-magnetic transducing characteristics may be obtained in the high frequency range.
Abstract:
A method for manufacturing a magnetic transducer head in which a track width regulating grooves provided on both edges of a magnetic gap are filled by blowing a powder beam of nonmagnetic material having a very fine particle size to deposit the nonmagnetic material in the grooves. A pair of magnetic core members are bonded together to form a magnetic gap therebetween by providing a metal layer of a bonding surface of the core members and applying a pressure to the core members under an elevated temperature to cause a mutual diffusion of the metal to bond the core members together. Thus the magnetic transducer head can be made without using a high-temperature heat treatment.
Abstract:
A magnetic thin film consisting essentially of Fe, Al and Si and further containing oxygen has high magnetic permeability and high hardness without lowering the magnetic properties such as saturation magnetic flux density or coercive force.The magnetic thin film has an increased specific resistivity and a lowered eddy current loss in the high frequency region and is suitable for a core material of magnetic transducer heads used in a high frequency region.The magnetic thin film is prepared by, for example, physical vapor deposition or ion implantation.
Abstract:
A magnetic transducer head comprising a first magnetic core element and a second magnetic core element, each of the first and second core elements comprising a magnetic ferrite block and a magnetic metal thin film integrated with the magnetic ferrite block. These core elements having a first planar surface and a second planar surface. The magnetic metal thin film being provided on the second planar surface and having an edge thereof facing to the first planar surface, and the second planar surface being slantly provided with respect to said first planar surface. These core elements being bonded together to form an operating magnetic gap between the edge of the magnetic metal thin film on the first core element and the edge of the magnetic metal thin film on the second core element. The magnetic metal thin film on the first core element or the magnetic thin film on the second core element is formed in one common plane.The magnetic metal thin film may be formed of the ferromagnetic metals including Fe--Al--Si alloys, amorphous metal alloys or permalloy. And the magnetic metal thin film having substantially uniform columnar grain structure or uniform magnetic anisotropy, over entire area of the film.
Abstract:
A magnetic thin film consisting essentially of Fe, Al and Si and further containing nitrogen has high magnetic permeability and high hardness without lowering the magnetic properties such as saturation magnetic flux density or coercive force.The magnetic thin film has an increased specific resistivity and a lowered eddy current loss in the high frequency region and is suitable for a core material of magnetic transducer heads used in a high frequency region.The magnetic thin film is prepared by, for example, physical vapor deposition or ion implantation.
Abstract:
There is disclosed an amorphous soft magnetic material represented by a composition formula:Co.sub.x Zr.sub.y Pd.sub.z M.sub.a wherein M denotes at least one element selected from a group consisting of niobium, chromium, vanadium, tantalum, tungsten, molybdenum; and0.82.ltoreq.x.ltoreq.0.940.04.ltoreq.y.ltoreq.0.100.01.ltoreq.z.ltoreq.0.080.01.ltoreq.a.ltoreq.0.10.The amorphous soft magnetic material, which has a high saturated magnetic flux density, a low coercive force, a high magnetic permeability and excellent wear and corrosion resistances, can be obtained by adding at least one or more of the elements of the Va and VIa groups to a Co--Zr--Pd amorphous soft magnetic material.
Abstract translation:PCT No.PCT / JP91 / 01458 Sec。 371日期:1992年7月6日 102(e)日期1992年7月6日PCT 1991年10月25日PCT PCT。 第WO92 / 09091号公报。 日期:1992年5月29日公开了由组成式:CoxZryPdzMa表示的无定形软磁性材料,其中M表示选自铌,铬,钒,钽,钨,钼中的至少一种元素; 和0.82 = x = 0.94 0.04 = y = 0.10 0.01 = z = 0.08 0.01 = a <0.10。 通过添加至少一种或多种Va和VIa基团的元素,可以获得具有高饱和磁通密度,低矫顽力,高磁导率和优异耐磨损和耐腐蚀性的非晶软磁性材料 到Co-Zr-Pd无定形软磁材料。