Abstract:
A shock absorber has a pressure tube with a piston assembly slidably disposed within the pressure tube and attached to a piston rod. The piston assembly divides the pressure tube into an upper working chamber and a lower working chamber. The piston assembly includes a frequency dependent valve assembly attached to the piston rod which defines a housing attached to the piston rod and a piston disposed within the housing. The piston moves within the housing to control the fluid flow through a bypass fluid passage that bypasses the piston assembly.
Abstract:
An exhaust aftertreatment system may include an oxidation catalyst, a soot sensor, a filter and a control module. The oxidation catalyst may be disposed in an exhaust gas passageway and may receive exhaust gas discharged from an engine. The soot sensor may be at least partially disposed in the exhaust gas passageway downstream of the oxidation catalyst. The filter may be disposed in the exhaust gas passageway downstream of the soot sensor. The control module may be in communication with the soot sensor and may determine a face-plugging condition of the oxidation catalyst based on data received from the soot sensor.
Abstract:
An exhaust aftertreatment system may include an oxidation catalyst, a soot sensor, a filter and a control module. The oxidation catalyst may be disposed in an exhaust gas passageway and may receive exhaust gas discharged from an engine. The soot sensor may be at least partially disposed in the exhaust gas passageway downstream of the oxidation catalyst. The filter may be disposed in the exhaust gas passageway downstream of the soot sensor. The control module may be in communication with the soot sensor and may determine a face-plugging condition of the oxidation catalyst based on data received from the soot sensor.