Abstract:
A hose-fed lateral move irrigation system and method that utilizes a pipe with a plurality of sprinklers attached to a wheeled cart that drags a flexible hose assembly therebehind while traveling laterally with the pipe and sprinklers relative to a field so that alternating the flexible hose assembly from one side of the cart to another as the cart traverses back and forth along a cart path is facilitated while kinking in the flexible hose assembly is avoided.
Abstract:
A control system for stopping or reversing movement of an irrigation system comprises an electronic proximity sensor and a control device. The electronic proximity sensor is configured for mounting to the irrigation system and operable to detect a target. The control device is responsive to the electronic proximity sensor for stopping or reversing movement of the irrigation system when the electronic proximity sensor detects the target.
Abstract:
A wheel assembly includes a rigid wheel with a plurality of circumferentially spaced radially outermost mounting elements and a flexible tire mounted on the wheel. The tire engages the mounting elements such that portions of the tire not engaging the mounting elements are separated radially from the wheel by a space, the portions of the tire not engaging the mounting elements being configured to flex inwardly toward the wheel when subject to ground engaging pressure.
Abstract:
A lateral move irrigation system comprising a main section having a first end and a second end, a first end section pivotally joined at the first end of the main section, a second end section pivotally joined at the second end of the main section, and a fluid delivery system. The main section may comprise a plurality of main towers configured to travel across a field in a lateral direction and a plurality of main support structures fixedly connected to and extending between adjacent ones of the main towers. The main support structures may be laterally aligned from the first end to the second end of the main section. The fluid delivery system may extend through the main section, first section, and second section. The first section may be pivoted into a Z-shaped configuration and the second section may be pivoted about a single joint.
Abstract:
An irrigation machine distribution pipeline is protected against corrosion by a plastic liner within a steel pipeline. Access openings are spaced along the pipeline and aligned with apertures in the plastic liner. The liner extends the full length of the pipeline. The outside diameter of the liner is sufficiently less than the inside diameter of the pipeline to allow the liner to slide into the pipeline during installation of the liner. A plurality of plastic outlet fittings extend through each access opening and aperture. Each outlet fitting is in sealing engagement with the plastic liner and provides fluid communication from the interior of the plastic liner through the aperture to the exterior of the pipeline. With this construction none of the steel components of the pipeline comes in direct contact with the water.
Abstract:
A hose-fed lateral move irrigation system and method that utilizes a pipe with a plurality of sprinklers attached to a wheeled cart that pulls a flexible-hose assembly therebehind using at least one onboard winch and travels laterally with the pipe and sprinklers relative to a field so that a sufficient amount of hose may be used to enable total automation of the system.
Abstract:
A track assembly for a mobile tower of an irrigation system includes: a mounting bracket configured to be attached to the mobile tower; a gearbox assembly and rotatable drive wheel hub attached to the mounting bracket; a drive wheel attached to the drive hub; rotatable tension wheel hub attached to the mounting bracket and spaced from the drive hub; a tension wheel attached to the tension wheel hub; and a track trained over the drive wheel and the tension wheel and driven by the drive wheel to propel the mobile tower.
Abstract:
A bearing structure for a pivoting irrigation system apparatus having a rotatable vertical section with a plurality of annular assemblies mounted thereon. The assemblies include a plurality of components that are rotatable and non-rotatable with the rotatable vertical section so as to facilitate movement with decreased friction therebetween.
Abstract:
An alignment unit for use with an irrigation system comprises a housing, an alignment sensor, an alignment controller, and an actuator. The irrigation system may include a plurality of spans, each including a drive tower and a drive unit. The housing may house at least a portion of the alignment unit. The alignment sensor may measure a real-time alignment of the drive tower. The alignment controller may be in communication with the alignment sensor and may be operable to receive the real-time alignment of the drive tower and energize the drive unit based on a first range of real-time alignment values. The actuator may couple with the alignment controller and may reorient at least a portion of the alignment controller in relation to the alignment sensor.
Abstract:
Mobile towers of an irrigation system have drive wheel assemblies that propel the towers along the ground. At least certain of the wheel assemblies may comprise dual wheels that share a common axis of rotation but are separately driven by their own drive motor. By driving the two separate wheels in unison but with their own individual drive shafts, increased ground-engaging surface area can be obtained without a consequential increase in load for any one motor.