Abstract:
Presented herein are a system and method (i.e., utilities) for monitoring the flow of materials used to mark road surfaces and other surfaces. The utilities utilize one or more flow meters to monitor individual flow rates of individual spray guns and may also utilize one or more pressure sensors to monitor and control individual flow rates.
Abstract:
A dispensing system includes a mobile dispensing device, a fluid transport device, and a fluid supply module. The mobile dispensing device includes a dispensing mechanism carried by a first frame including a first track portion. The fluid transport device includes a second frame supported by at least one wheel for rolling movement of the second frame on the substrate, with the second frame including a second track portion. The fluid supply module includes a base member and at least one reservoir carried by the base member and connectable with the dispensing mechanism for dispensing a fluid stored in the at least one reservoir. The base member includes a third track portion selectively engageable with either one of the first and second track portions for releasable assembly of the fluid supply module with the corresponding one of the mobile dispensing device and the fluid transport device.
Abstract:
A spray head for a fluid distribution system may include first and second deflector inner surfaces defining a fluid outlet. A piston may define a variable orifice communicating with the fluid outlet to control fluid flow through the spray head. An inner surface of the second deflector may define a grooveless deflector central region disposed between first and second deflector lateral regions. Each of the first and second deflector lateral regions may include at least a first deflector groove extending along a first deflector groove path oriented substantially radially relative to the inlet passage, so that the spray head generates a spray pattern having more uniform fluid distribution across the spray pattern.
Abstract:
Presented herein are a system and method (i.e., utilities) for monitoring the flow of materials used to mark road surfaces and other surfaces. The utilities utilize one or more pressure sensors to monitor in-line pressure of road marking material to determine the amount of material being applied. Electronic equipment receives signals from the pressure sensors, temperature sensors and/or additional monitoring equipment to generate an output indicative of an amount of material flow. In a further arrangement, the equipment generates an output indicative of a thickness of the read marking material as applied to a surface.
Abstract:
A method for extruding composite materials on a substrate includes feeding a first material into a first channel and a second material, used to maintain a shape of the first material, into one or more second channels residing on at least one side of the first channel, merging the flows of the first and second materials into a single flow in which the second material surrounds the first material, applying the single flow to a substrate to produce at least one composite material, and post-processing the composite material to form a solid.
Abstract:
An electrically-actuated variable pressure control system for use with flow-controlled liquid application systems. Direct acting solenoid valves are pulsed at varying frequencies and duty cycles to change the resistance to flow encountered by the flow-controlled liquid application system. This pulsing solenoid valve technique preserves a high degree of accuracy and uniformity through a wide range of pressure control. This wide range of pressure control indirectly allows the flow-controlled liquid application system to operate over a wider range of flow control, yielding indirect benefits to performance and productivity. When the solenoid valves are attached to pressure-atomization spray nozzles, control over spray pattern and droplet size is further achieved.
Abstract:
A flexible, self-adjusting flow nozzle is provided, optimally configured for agricultural uses. The nozzle flexes automatically in response to changes in fluid pressure, thereby maintaining an optimal droplet size and spray area for a variety of flow rates. The self-adjusting characteristic of the nozzle allows for the creation of a fully or semi-automatic spray system. The fully automatic system uses a GPS receiver to compare actual geographic data against a predetermined flow plan for automatically making adjustments to flow rate in order to accommodate both speed changes and varying crop needs. The semi-automatic system uses a manually controlled flow rate but utilizes the self-adjusting capabilities of the spray nozzle.
Abstract:
An at least two layer, unsupported, continuous microporous membrane is disclosed. The at least two layer, unsupported, continuous microporous membrane may include at least two different membrane pore size layers or the pore sizes may have about the same pore size. Apparatus and processes for fabricating at least a two layer unsupported, continuous, microporous membrane are also disclosed. One representative process disclosed for forming a continuous, unsupported, multilayer phase inversion microporous membrane having at least two layers comprises of the acts of: operatively positioning at least one dope applying apparatus, having at least two polymer dope feed slots, relative to a continuous moving coating surface; applying polymer dopes from each of the dope feed slots onto the continuously moving coating surface so as to create a multiple layer polymer dope coating on the coating surface; subjecting the multiple dope layer to contact with a phase inversion producing environment so as to form a wet multilayer phase inversion microporous membrane; and then washing and drying the membrane. Other representative apparatuses and processes are also disclosed.
Abstract:
An at least two layer, unsupported, continuous microporous membrane is disclosed. The at least two layer, unsupported, continuous microporous membrane may include at least two different membrane pore size layers or the pore sizes may have about the same pore size. Apparatus and processes for fabricating at least a two layer unsupported, continuous, microporous membrane are also disclosed. One representative process disclosed for forming a continuous, unsupported, multilayer phase inversion microporous membrane having at least two layers comprises of the acts of: operatively positioning at least one dope applying apparatus, having at least two polymer dope feed slots, relative to a continuous moving coating surface; applying polymer dopes from each of the dope feed slots onto the continuously moving coating surface so as to create a multiple layer polymer dope coating on the coating surface; subjecting the multiple dope layer to contact with a phase inversion producing environment so as to form a wet multilayer phase inversion microporous membrane; and then washing and drying the membrane. Other representative apparatuses and processes are also disclosed.
Abstract:
A method and apparatus for painting traffic marking lines over old paint markings on road pavement is disclosed. The apparatus, normally installed on a marking vehicle having a paint gun and a paint supply, includes a detector which illuminates the pavement and utilizes a spectroscope to analyze the return inspection for the presence of one or more known preselected constituents of the old paint marking to control actuation of the valve on the paint gun and also track the old pavement marking. The apparatus also provides a paint gun delay function to account for the lead distance between detector and paint gun and enables the application of new paint markings directly over the old markings at a relatively high rate of vehicle speed.