摘要:
Methods and architectures for code phase searching spread spectrum signals having a repeating sequence of bits. The signals are searched virtually in parallel by segmenting with a divider (314) received signals by sequentially, partially correlating signal segments with a corresponding replica signal segments for a predetermined number of phase delays during a time interval not greater than that required to form the next signal segment. Multiplexors (322) and (330) provide Doppler and replica signal segments data from Doppler signal and replica signal generators (318) and (320) to corresponding multipliers (326) and (332), respectively, for multiplication with corresponding signal segments in a segment register (316). The partial correlation results for each phase delay and at each Doppler frequency are stored in corresponding memory locations in a coherent accumulation RAM (334). The signals may be searched over one or more phase delays and at one or more Doppler frequencies.
摘要:
An apparatus for improving the acquisition time of GPS signals includes a GPS receiver (21) and a real-time clock circuit (30). The GPS receiver receives GPS signals including a precise time reference signal for providing a position based upon the location of the GPS receiver. The GPS receiver also includes an internal time base (11) derived from the precise time reference signal. The real-time clock circuit is coupled to the GPS receiver for receiving a first time reference signal from the GPS receiver when the precise time reference signal of the GPS signal is available and for providing a second time reference signal to the GPS receiver when the precise time reference signal of the GPS signal is not available thereby allowing a fast acquisition time of GPS signals when the GPS signals are temporarily interrupted or not yet available.
摘要:
In a telecommunication system (15) with at least one gateway (1), at least one subscriber unit (2), a system controller (3), at least one communication satellite (4) and global positioning satellites (5), communication satellite (4) provides positioning information to subscriber units (2). System controller (3) uses links (13,14) with communication satellites (4) to control links (10,11) and links (8,9). Subscriber unit (2) receives on link (6) positioning information which is used by subscriber unit (2) to determine which global positioning satellites (5) are overhead. Knowing which global positioning satellites (5) are overhead allows subscriber unit (2) to more quickly acquire and track the global positioning satellites (5) required to accurately geo-locate itself. Subscriber unit (2) computes accurate location data and can transmit this data to gateway (1).
摘要:
Method in a Global Positioning System (GPS) receivers, including determining pseudorange (PNR) measurements for at least four satellites (210), determining a coarse time (220) corresponding to the pseudorange measurement, determining an offset time (240) between a periodic GPS event of one of the four satellites and the coarse time, determining a time correction delta (250) based upon the period of the Periodic GPS event, the offset time and the coarse time if an error of the coarse time is less than ½ the period of the periodic GPS event, and determining corrected time (260) based upon the coarse time and the time correction delta if the error of the coarse time is less than ½ the period of the periodic GPS event.
摘要:
A method and apparatus for determining position in a GPS receiver (FIG. 4) is provided according to the invention. The apparatus includes a first switch (402), the first switch (402) receiving a digital GPS data, a first memory (409), a second memory (410) in parallel with the first memory, with the first memory and the second memory selectable by the first switch (402) for filling with the digital GPS data, and a second switch (416) selectable between the first memory (409) and the second memory (410) in order to extract the digital GPS data therefrom, wherein DSP signal processing (140) extracts digital GPS data from the first memory (409) while the second memory (410) is being filled and extracts digital GPS data from the second memory (410) while the first memory is being filled, and wherein the first memory (409) and the second memory (410) allow the digital GPS data to be processed in real time.
摘要:
A periodic pulse generator has a programmable counter (15) and processor (10) coupled to a GPS receiver for generating a periodic clock signal. The processor (10) transmits a control word to a digital to analog converter (20) which steers a voltage controlled crystal oscillator (25), processor 10 also controls the programmable counter (15) to produce a stable output pulse, if the voltage controlled crystal osciallator (25) output is an integer frequency.
摘要:
A global positioning system (GPS) receiver that is configured to rapidly acquire GPS signals in space applications and a method for rapidly acquiring GPS signals in space applications is disclosed. In an embodiment, the GPS receiver includes, but is not limited to, a GPS signal acquisition component. The GPS signal acquisition component is adapted to acquire a GPS signal by receiving data from the GPS signal and processing the data to detect the GPS signal.
摘要:
A global positioning system (GPS) receiver that is configured to rapidly acquire GPS signals in space applications and a method for rapidly acquiring GPS signals in space applications is disclosed. In an embodiment, the GPS receiver includes, but is not limited to, a GPS signal acquisition component comprising a time domain correlation module. The GPS signal acquisition component is adapted to acquire a GPS signal by receiving data from the GPS signal and processing the data to detect the GPS signal.
摘要:
Methods and architectures for data message bit synchronization of a spread spectrum signal having a repeating sequence of pseudorandom code bits modulated with data message bits having a data bit time that is an integer number of a repeat time of the pseudorandom code bits. In one embodiment, an adjusted bit sync offset time is determined for each of a plurality of signals for which bit sync offset time is not known based on a corresponding clock error corrected propagation time for each signal, based on a known bit synch offset time and based on a clock error corrected propagation time of the signal for which bit synch offset time is known.
摘要:
A multiple channel receiver (200) includes a communications receiver synthesizer (204) and at least one numerically controlled oscillator (NCO) (406) that produce local oscillator signals that are derived from a common reference oscillator (202). A DSP (212) and CPU (214) perform automatic frequency control (AFC) by adjustment of the reference oscillator (202) based upon a signal received by a receive channel using the local oscillator signal produced by the communications receiver synthesizer (204). The CPU (214) also provides a synchronous indication of adjustments to the reference oscillator (202) to control circuitry for the at least one NCO (406) so that the configuration of the NCO (406) can be altered so as to maintain a substantially constant frequency output during the adjustment of the reference oscillator (202).