Abstract:
A method for determining the distance of a scanning probe of a scanning probe microscope from a specimen surface to be examined comprising the steps of: exciting the scanning probe to oscillations lateral to a surface to be examined; recording at least one amplitude signal and a frequency signal and a phase signal of the oscillating scanning probe; superimposing a vertically oscillating movement of the scanning probe and specimen surface to be examined relative to one another is superimposed on the oscillation of the scanning probe lateral to the specimen surface to be examined; and determining the distance of the scanning probe from the specimen surface from at least one of the amplitude signal and a frequency signal and a phase signal.
Abstract:
The invention relates to a method for differentiating between people and other objects on vehicle seats, by recording and evaluating the pressure distribution caused on the seat by said people and objects, the mean deviation of the signal at a certain position in relation to the mean signal of the adjacent region enabling the differentiation between people and other objects to be made. The invention is advantageous in that only few criteria are required and the criteria are not bound to any specific sensor structures (metrical, discrete etc.). Furthermore, where required, the individual criteria need only be combined in a simple manner.
Abstract:
The invention relates to a method for differentiating between people and other objects on vehicle seats, by recording and evaluating the pressure distribution caused on the seat by said people and objects, the mean deviation of the signal at a certain position in relation to the mean signal of the adjacent region enabling the differentiation between people and other objects to be made. The invention is advantageous in that only few criteria are required and the criteria are not bound to any specific sensor structures (metrical, discrete etc.). Furthermore, where required, the individual criteria need only be combined in a simple manner.
Abstract:
A process for the location-resolved simultaneous detection of the adhesion and friction as well as possibly of other material properties of a sample surface to be examined by means of a raster probe microscope comprising a raster probe. The raster probe and/or the sample with sample surface are moved until at a point of the sample surface to be examined the raster probe interacts in a determined manner with this surface. The raster probe and/or the sample are subjected to a vertical oscillation, and a first measuring signal characterized by the deformation of the raster probe is recorded. A second measuring signal characterizing the deformation of the raster probe is recorded, wherein the raster probe and/or the sample are subjected to a horizontal and/or vertical oscillation. From these two measuring signals the desired material properties are determined. For the detection of the entire surface area to be examined the raster probe and or the sample are again moved and for the repetition of the measuring process described brought into contact with the sample surface in the above described manner.