Abstract:
A method and apparatus for redirecting data traffic are provided. The method includes receiving a service request from a first device, allocating resources for the service, associating the resources with a first unique identifier, confirming the service request with the first device, receiving a connection request from a second device including the first unique identifier and an authentication certificate, passing the authentication certificate to the first device, and receiving an authentication confirmation from the first device. The method further includes, in response to receiving the authentication confirmation, accepting the connection request from the second device, providing an indication regarding at least one local area network to the second device, and providing required credentials associated with the at least one local area network to the second device.
Abstract:
A method and apparatus for redirecting data traffic, the method includes exchanging user data over a wireless connection with a destination identified by an Internet Protocol address using a wide area bearer, receiving, over the wide area bearer, an off-loading indication message including address information of at least one local access server, exchanging signalling messages including information regarding one or more available local access networks with the at least one local access server specified in the off-loading indication message, selecting a local access network based at least part on information exchanged with the at least one local access server and on information regarding wireless signal coverage activating a supplementary wireless local area bearer based at least part on information regarding one or more available local access networks received from the at least one local access server, and routing new connection opening requests to the supplementary wireless local area bearer.
Abstract:
An oxyfuel combustion system for generating power that includes a furnace for combusting carbonaceous fuel and substantially pure oxygen to produce exhaust gas including mainly carbon dioxide and water. An exhaust gas channel system discharges the exhaust gas from the furnace. The exhaust gas channel system has an upstream channel, an outlet channel and a gas recycling channel. The upstream channel recycles a recycling portion of the exhaust gas through the recycling channel to the furnace, and conveys an end portion of the exhaust gas through the outlet channel for final processing. The upstream channel is divided between a first divider piece and a connecting piece into a first exhaust gas channel portion and a second exhaust gas channel portion. A gas-gas heat exchanger arranged in the first exhaust gas channel portion transfers heat from exhaust gas in the first exhaust gas channel portion to gas in the gas recycling channel. A first economizer arranged in the second exhaust gas channel portion transfers heat from exhaust gas in the second exhaust gas channel portion to a flow of feedwater in a feedwater line, and a second economizer arranged in the exhaust gas channel system downstream of the connecting piece transfers heat from gas in the exhaust gas channel system to the flow of feedwater in the feedwater line.
Abstract:
A hand portable device such as a mobile telephone 10 includes an engine assembly 12 and a cover 14, 16 for encasing the engine assembly. The device 10 further includes a closing arrangement 44, 45, 46, 50 alterable between a first condition in which it retains the cover 14, 16 on the engine assembly 12 and a second condition in which it allows at least a part 14 of the cover to be removed from the engine assembly 12, the closing arrangement including a polymer actuator 50, the configuration of which may be altered to alter the condition of the closing arrangement.
Abstract:
An apparatus for pneumatically conveying particulate material containing reaction products of a high pressure reactor from a supply vessel at a pressure of at least two bar to a receiving vessel at a considerably lower pressure. The apparatus includes a conveyor line attached to the supply vessel, a collecting vessel between the conveyor line and the receiving vessel, the collecting vessel including (i) a discharge conduit for the carrier gas, (ii) a device for controlling the discharge velocity of the carrier gas from the collecting vessel, and (iii) a device for controlling the pressure of the material collected in the collecting vessel, and a device for conveying the material directly from the collecting vessel to the receiving vessel essentially at the same pressure as is prevailing in the receiving vessel.
Abstract:
The present invention relates to a combined cycle power plant comprising a air compressor providing pressurized air at pressure greater than 2 bar; a gas turbine means for driving the gas compressor means; a pressure vessel, circular in cross-section, connected to said air compressor and being capable of withstanding pressures greater than 2 bar; a pressurized circulating fluidized bed reactor enclosed by the pressure vessel, the circulating fluidized bed reactor having a reactor chamber, including substantially planar steam generation tube walls having a bottom section; means for leading hot combustion gases away from said reactor; one or more non-circular centrifugal separator(s) disposed within said pressure vessel being adapted to the reactor chamber and internal pressure vessel geometry for receiving and purifying hot combustion gases, having a gas outlet leading from said separator out of said pressure vessel; said centrifugal separator comprising a vertical vortex chamber having distinctly planar steam generation tube walls defining an interior gas space; and a bubbling fluidized bed heat exchanger chamber having distinctly planar steam generation tube walls defining an interior of said chamber, said chamber being connected to the bottom section of said reactor chamber; a heat recovery unit adapted to the gas turbine means for recovering heat from gas discharged therefrom; a steam generation cycle having a steam turbine, steam generation surfaces including said steam generation walls, and steam superheating surfaces.
Abstract:
A system for automating connection management in a manner that may be transparent to any actively communicating applications operating in a Network on Terminal Architecture (NoTA). An application level entity, such as an application node, may access another node by making a request to a high level communication structure via a high level interface. The high level structure may then interact with a lower level structure in order to facilitate a connection to a programmatic element on another device, for example, via a wireless communication transport.
Abstract:
A method, apparatus and system for resource allocation in redirection of data traffic are provided. The method includes receiving a message including a subscription identification, position information associated with the subscription and an action proposal associated with the subscription (200a), selecting at least one local area network based at least in part on the position information (222), mapping the at least one local area network to a local area network server (230), ensuring a valid unique task identification for the subscription in the local area network server, and sending an off -loading indication message including the action proposal, the valid task identification and an identifier of the local area network server to the subscription (200d).
Abstract:
A system for automating connection management in a manner that may be transparent to any actively communicating applications operating in a Network on Terminal Architecture (NoTA). An application level entity, such as an application node, may access another node by making a request to a high level communication structure via a high level interface. The high level structure may then interact with a lower level structure in order to facilitate a connection to a programmatic element on another device, for example, via a wireless communication transport.
Abstract:
An oxycombustion circulating fluidized bed reactor includes a reactor chamber and a gas distribution arrangement provided in a bottom section of the reactor chamber for introducing gas into the reactor chamber. The gas distributor arrangement includes a first gas feeding system and a second gas feeding system for introducing oxygen-rich gas into the reactor chamber. The first gas feeding system includes a first wind box and the second gas feeding system includes a second wind box. The first wind box has a common wall with the reactor chamber and the second wind box is arranged under the first wind box and has a common wall with the first wind box.