摘要:
A power management circuit for managing low power modes in a computer system, which implements four power modes, from highest power consumption to lowest power consumption: RUN mode, SLEEP mode, IDLE mode, and STAND BY mode. The computer system includes a PCI bus and an ISA bus, with a CPU-PCI bridge to connect the host bus and the PCI bus and a PCI-ISA bridge to connect the PCI bus and the ISA bus. The power management circuit transitions from SLEEP mode to IDLE mode by first determining if the CPU-PCI bridge is parked on the PCI bus and if it is in SLEEP mode. The power management circuit then waits for one refresh period and for all internal queues to empty before checking again to determine if the CPU-PCI bridge is still parked on the PCI bus and if it is still in SLEEP mode. If true, the CPU-PCI bridge transitions to IDLE mode. The power management circuit also performs low power refresh cycles when it is in IDLE or STANDBY mode. In those modes, the memory controller in the CPU-PCI bridge is disabled to conserve power. The power management circuit performs the refresh cycles based off an external asynchronous clock. Further, the power management circuit drives certain PCI bus signals to a certain state to avoid leakage current due to the existence of a mixture of 3.3-bolt and 5-volt components connected to the PCI bus.
摘要:
A computer system includes a bus bridge which provides an interface between a main memory and a peripheral bus such as a PCI bus. A peripheral bus interface unit is provided which supports delayed transactions. When a PCI bus master effectuates a read cycle to read data from main memory on the PCI bus, the peripheral bus interface detects the read cycle and terminates or retries the transaction on the PCI bus. The peripheral bus interface further requests the read data from main memory and places the read data in a buffer. When the PCI master device re-attempts the read transaction, the peripheral interface provides the read data directly from its delayed read buffer. When the peripheral bus interface retries the PCI master that establishes a delayed read operation, the peripheral bus interface asserts a control signal referred to the delayed cycle signal. A PCI arbiter which controls ownership of the PCI bus receives the delayed cycle signal and, in response to its assertion, lowers a level of arbitration priority provided to the PCI master establishing the delayed read. In one embodiment, the PCI arbiter inhibits ownership of the PCI bus by the master establishing the delayed read in response to assertion of the delayed cycle signal. When the peripheral bus interface receives the read data and is ready to deliver it to the PCI bus, the delayed cycle signal is deasserted (or strobed). The PCI bus arbiter detects this deassertion (or strobing) of the delayed cycle signal and responsively raises a level of arbitration priority to the PCI master establishing the delayed read. In one implementation, upon detecting the deassertion of the delayed cycle signal, the PCI bus arbiter provides a highest level of arbitration priority to the PCI master establishing the delayed read. The delayed read operation then completes when the PCI master re-initiates the read cycle. The optimized arbitration technique may similarly be employed during other delayed transactions, such as memory writes, I/O read or writes, and configuration reads or writes.
摘要:
A power management circuit for managing low power modes in a computer system, which implements four power modes, from highest power consumption to lowest power consumption: RUN mode, SLEEP mode, IDLE mode, and STANDBY mode. The computer system includes a PCI bus and an ISA bus, with a CPU-PCI bridge to connect the host bus and the PCI bus and a PCI-ISA bridge to connect the PCI bus and the ISA bus. The power management circuit transitions from SLEEP mode to IDLE mode by first determining if the CPU-PCI bridge is parked on the PCI bus and if it is in SLEEP mode. The power management circuit then waits for one refresh period and for all internal queues to empty before checking again to determine if the CPU-PCI bridge is still parked on the PCI bus and if it is still in SLEEP mode. If true, the CPU-PCI bridge transitions to IDLE mode. The power management circuit also performs low power refresh cycles when it is in IDLE or STANDBY mode. In those modes, the memory controller in the CPU-PCI bridge is disabled to conserve power. The power management circuit performs the refresh cycles based off an external asynchronous clock. Further, the power management circuit drives certain PCI bus signals to a certain state to avoid leakage current due to the existence of a mixture of 3.3-bolt and 5-volt components connected to the PCI bus.
摘要:
A computer system for supporting a subtractive agent on a secondary PCI bus is provided. A bridge resides between a primary PCI bus and a secondary PCI bus. Where both a master device and a target device reside on the secondary PCI bus, the bridge employs one of two protocols to permit successful completion of the transaction. The protocol used depends upon the type of transaction sought by the master device. Once the subtractive agent is identified by address, the bridge keeps track of its location. Thus, further operations targeting the subtractive agent run without requiring either protocol to be used. Further, the need for a specialized signaling protocol to access the subtractive agent is avoided.
摘要:
A computer system includes a South bridge logic device that monitors the FLUSHREQ signal and masks that signal when the CPU transitions the computer to a low power mode of operation. Once masked, the FLUSHREQ cannot be asserted to the North bridge and the conflict between attempts by the CPU and an ISA device to run cycles on the PCI bus is avoided. The South bridge also masks all requests to run cycles on the PCI bus that are not originated by the CPU. The South bridge includes a programmable control register and a PCI arbiter. When a control bit is set in the register, the PCI arbiter waits for FLUSHREQ to be deasserted and then masks FLUSHREQ. The PCI arbiter preferably also disables PCI arbitration by masking all non-CPU. Only the CPU can run PCI cycles when the non-CPU requests are masked. The programmable control register also includes a masking status bit that is set when both the FLUSHREQ and non-CPU request signals are masked by a request mask state machine. The computer system may also include a laptop computer docked to an expansion base with a South bridge included in the computer and the expansion base.
摘要:
A PCI bridge is configured to perform delayed read operations in response to a memory read initiated on the PCI bus. Normally, the PCI bridge is configured to discard delayed read data read from main memory following a predetermined discard count time after the PCI master establishing the delayed read operation is retried on the PCI bus. The computer system further includes a secondary bus bridge such as an ISA bridge for providing an interface between the PCI bus and an ISA bus. When an ISA device desires to read data from the main memory, the ISA bridge asserts a flush request signal. The PCI bridge responsively flushes any pending CPU to PCI transactions pending within the PCI bridge. When the flushing operation is complete, the PCI bridge asserts an acknowledge signal. A PCI arbiter for arbitrating ownership of the PCI bus may increase a level of arbitration priority provided to the ISA bridge in response to assertion of the acknowledge signal. The PCI bridge is advantageously configured to decrease the time associated with discarding of the delayed read data when the acknowledge signal is asserted.
摘要:
A computer system includes bridge logic that couples peripheral devices to a CPU and main memory and includes power management logic and a programmable interrupt controller. The power management logic includes control logic, a stop clock register, an alternate stop clock register, and a wakeup event register. The operating system initiates a transition to a lower power mode of operation by issuing an IDLE call to the BIOS which responds by configuring a modulation value of 15 into the alternate stop clock register. With a modulation value of 15, the SLEEPREQ signal is continuously asserted disabling the CPU's internal clock. When a subsequent wakeup event occur, an enable bit in the alternate stop clock register is cleared, disabling modulation and deasserting SLEEPREQ. In response to the wakeup event, the amount of SLEEPEQ modulation is changed. Preferably the modulation value is changed to 14 so that SLEEPREQ is asserted for 14 out of every 15 cycles of a 32 KHz clock. The wakeup event register is configured to disable the system timer from being again causing a wakeup event. If a subsequent wakeup event is then detected, either the enable bit in the alternate stop clock register is cleared to disable SLEEPREQ modulation or the modulation value is programmed to a value of 0. If the enable bit is cleared, SLEEPREQ modulation is determined by the modulation value in a secondary stop clock register.
摘要:
A power management circuit for managing low power modes in a computer system, which implements four power modes, from highest power consumption to lowest power consumption: RUN mode, SLEEP mode, IDLE mode, and STANDBY mode. The computer system includes a PCI bus and an ISA bus, with a CPU-PCI bridge to connect the host bus and the PCI bus and a PCI-ISA bridge to connect the PCI bus and the ISA bus. The power management circuit transitions from SLEEP mode to IDLE mode by first determining if the CPU-PCI bridge is parked on the PCI bus and if it is in SLEEP mode. The power management circuit then waits for one refresh period and for all internal queues to empty before checking again to determine if the CPU-PCI bridge is still parked on the PCI bus and if it is still in SLEEP mode. If true, the CPU-PCI bridge transitions to IDLE mode. The power management circuit also performs low power refresh cycles when it is in IDLE or STANDBY mode. In those modes, the memory controller in the CPU-PCI bridge is disabled to conserve power. The power management circuit performs the refresh cycles based off an external asynchronous clock. Further, the power management circuit drives certain PCI bus signals to a certain state to avoid leakage current due to the existence of a mixture of 3.3-volt and 5-volt components connected to the PCI bus.
摘要:
A power management circuit for managing low power modes in a computer system, which implements four power modes, from highest power consumption to lowest power consumption: RUN mode, SLEEP mode, IDLE mode, and STANDBY mode. The computer system includes a PCI bus and an ISA bus, with a CPU-PCI bridge to connect the host bus and the PCI bus and a PCI-ISA bridge to connect the PCI bus and the ISA bus. The power management circuit transitions from SLEEP mode to IDLE mode by first determining if the CPU-PCI bridge is parked on the PCI bus and if it is in SLEEP mode. The power management circuit then waits for one refresh period and for all internal queues to empty before checking again to determine if the CPU-PCI bridge is still parked on the PCI bus and if it is still in SLEEP mode. If true, the CPU-PCI bridge transitions to IDLE mode. The power management circuit also performs low power refresh cycles when it is in IDLE or STANDBY mode. In those modes, the memory controller in the CPU-PCI bridge is disabled to conserve power. The power management circuit performs the refresh cycles based off an external asynchronous clock. Further, the power management circuit drives certain PCI bus signals to a certain state to avoid leakage current due to the existence of a mixture of 3.3-volt and 5-volt components connected to the PCI bus.