Abstract:
A bending restrictor assembly has a pipeline section, a first overlying pipe section having a wall overlying a portion of the pipeline section at one end thereof, a second overlying pipe section having a wall overlying another portion of the pipeline section at an opposite end thereof, and a plurality of cylindrical members overlying the pipeline section between the first and second overlying pipe sections. The first and second overlying pipe sections extend outwardly beyond the respective ends of the pipeline section. The bending restrictor assembly achieves a permanent bend and restricts ovality of a subsea pipe.
Abstract:
A bending restrictor assembly for use with a pipeline section has a sleeve affixed to the pipeline section, an outer collar slidably positioned relative to and over the sleeve, and an inner collar slidably positioned relative to an interior of the outer collar. The inner collar in spaced longitudinal relation to an end of the sleeve. The inner and outer collars are slidable relative to a bending of the pipeline section. A series of holes and keyways are formed in the inner and outer collars. Pins are inserted into corresponding holes and keyways so as to correspond to a limit of the bending radius of the pipeline section.
Abstract:
An improved riser system which comprises a connector for connecting conduits and a mooring system for mooring the connector to the floor of a body of water. The connector may include a pivoting device. The improved riser system also comprises a buoy system for supporting the connector. The buoy system is configured to provide a fixed buoyancy for the connector, the mooring system and at least a portion of the conduits and for providing variable buoyancy for placement of the connector at a predetermined water depth. The improved riser system may also include a flexible conduit made of titanium.
Abstract:
For cathodic protection of piping a sacrificial anode sleeve is placed around the pipe and caused to form an electrically conductive connection with the pipe by means of detonation of an explosive charge within the pipe, in the region covered by the sacrificial anode.
Abstract:
A bending restrictor assembly has a pipeline section, a first overlying pipe section having a wall overlying a portion of the pipeline section at one end thereof, a second overlying pipe section having a wall overlying another portion of the pipeline section at an opposite end thereof, and a plurality of cylindrical members overlying the pipeline section between the first and second overlying pipe sections. The first and second overlying pipe sections extend outwardly beyond the respective ends of the pipeline section. The bending restrictor assembly achieves a permanent bend and restricts ovality of a subsea pipe.
Abstract:
A bending restrictor assembly for use with a pipeline section has a sleeve affixed to the pipeline section, an outer collar slidably positioned relative to and over the sleeve, and an inner collar slidably positioned relative to an interior of the outer collar. The inner collar in spaced longitudinal relation to an end of the sleeve. The inner and outer collars are slidable relative to a bending of the pipeline section. A series of holes and keyways are formed in the inner and outer collars. Pins are inserted into corresponding holes and keyways so as to correspond to a limit of the bending radius of the pipeline section.
Abstract:
A method is described for controlled bending of a pipeline during the laying thereof in the sea, utilizing bend controlling/stopping means which are mounted on the pipeline as a sleeve and interact with the pipeline. To achieve cold bending under controlled conditions, the pipeline is weight loaded internally at the selected bending zone. The weight loading may be achieved by means of a flexible string of weight elements and/or by introducing into the pipe a suitable heavy, readily flowable weight mass, for example, drilling fluid.
Abstract:
A bending restrictor assembly has a pipeline section, a first pipe section affixed to the pipeline section overlying the outer diameter of the pipeline section, a second pipe section affixed to the pipeline in spaced relation to the first pipe section and overlying the outer diameter of the pipeline section, a first collar element having at least a portion positioned between the first and second pipe sections in which the portion overlies the outer diameter of the pipeline section, a second collar element having at least a portion positioned between the first and second pipe sections in which the portion overlies the outer diameter of the pipeline section, and at least one stop member cooperative at the first and second collar elements so as to limit the relative movement of the first and second collar elements so as to limit the bending of the pipeline section.
Abstract:
This invention provides a method for installing a self-floating deck structure with at least one recessed cavity on the bottom of the self-floating deck structure onto a buoyant substructure. The self-floating deck structure is aligned over a submerged buoyant substructure and the top of the buoyant substructure is inserted into a recessed cavity in the self-floating deck structure until the buoyant substructure mates with the self-floating deck structure at a point above the water surface. The self-floating deck and the buoyant substructure are connected by welding or one or more mechanical device.
Abstract:
In explosion welding to join abutting pipes it is proposed that the external support comprise an annular member made of concrete or similar material.