Abstract:
A wireless communication apparatus for performing transmission and reception by using a Time Division Duplexing method is disclosed. The wireless communication apparatus includes a receiving part configured to output a timing signal based on a received timing signal, a transmitting part configured to transmit a timing signal based on the timing signal received by the receiving part, a control part configured to increase a reception opportunity for the receiving part to receive the timing signal and decrease a transmission opportunity for the transmitting part to transmit the timing signal as the accuracy of the timing signal received by the receiving part becomes lower.
Abstract:
A multiple-antenna system including a base station apparatus and a plurality of antenna apparatuses connected to the base station via optical cables is provided. The system comprises a first antenna apparatus and a second antenna apparatus connected to each other via an electric cable. Each of the first and second antenna apparatuses receives a reference pulse from the base station apparatus via the optical cables, and estimates a time difference between the received pulse and the reference pulse supplied from the counterpart antenna apparatus via the electric cable. At least one of the first and second antenna apparatuses adjusts signal transmission timing based on the time differences estimated by the first and second antenna apparatuses.
Abstract:
A wireless communication apparatus for performing transmission and reception by using a Time Division Duplexing method is disclosed. The wireless communication apparatus includes a receiving part configured to output a timing signal based on a received timing signal, a transmitting part configured to transmit a timing signal based on the timing signal received by the receiving part, a control part configured to increase a reception opportunity for the receiving part to receive the timing signal and decrease a transmission opportunity for the transmitting part to transmit the timing signal as the accuracy of the timing signal received by the receiving part becomes lower.
Abstract:
An electric power leveling controller includes an information acquisition unit that acquires information of electric energy consumption from a power consuming device consuming electric energy from the power source and electric energy charged into a power storage device, a storage unit that stores a specific threshold value for each power storage device, and a control unit that causes a first power consuming device to be power-supplied by the power source, causing the power storage device corresponding to the first power consuming device to be charged with a difference between the specific threshold value and the electric energy consumption, causing the power source to supply to a second power consuming device electric energy corresponding to the specific threshold, and causing the power storage device corresponding to the second power consuming device to discharge to the second power consuming device the difference between the electric energy consumption and the specific threshold value.
Abstract:
A plurality of carriers are divided into two systems, one on a low-frequency side and the other on a high-frequency side, a transmitting unit that executes processing for transmitting a signal wirelessly is provided in each of the two systems, and output lines of transmit amplifiers of each of the transmitting units are directly coupled and input to an antenna. A feedback unit on the low-frequency side feeds a low-frequency carrier signal portion contained in the transmit signal back to a distortion compensating unit on the low-frequency side, and a feedback unit on the high-frequency side feeds a high-frequency carrier signal portion contained in the transmit signal back to a distortion compensating unit on the high-frequency side. The distortion compensating units compensate for distortion on the low- and high-frequency sides.
Abstract:
A multi-antenna system comprising a plurality of linearly connected antenna units, and a base station device connected to at least one of the antenna units. The antenna units connected in a first direction or a second direction are combined to constitute a multi antenna. The multi-antenna system comprises a unit addition unit that adds one unit to number-of-connected-antenna-units information which is input from the first direction; a number-of-connections sending unit that sends the number-of-connected-antenna-units information, to which one unit has been added as described above, as the number-of-connected-antenna-units information in the second direction; a received data addition unit that adds input digital data, which is input from the first direction, to received digital data; an added-digital-data sending unit that sends the digital data, to which input digital data has been added, as input digital data in the second direction; and a transmission data sending unit that copies the transmission digital data, which is input from the second direction, and sends the copied digital data in the first direction.
Abstract:
A device that estimates a positional relationship between loads individually connected through sensors to electric power-supply ends provided in a power distribution network includes a communication unit configured to change a resistance value located between each of electric power-supply ends and a ground terminal of each of sensors and measure a voltage value produced between each of the electric power-supply ends and the ground terminal; and a determination unit configured to acquire voltage values from the two selected sensors from among the sensors after a resistance value of one of the two sensors that has a higher acquired voltage value is changed, calculate a ratio between voltage values acquired before and after the resistance value is changed, and determine that the two sensors are connected to a branch circuit in a same system in the power distribution network, when each ratio about the two sensors is within a specified range.
Abstract:
A base transceiver station (BTS) identifies the number of currently connected antenna units by receiving a signal to which 1 is added in each antenna unit via a signal line (16) connecting the antenna units (AU1 to AUn) in series. The target output power of each antenna unit, which is obtained by dividing the total target output power of the antenna units by the number of currently connected antenna units, is passed to each antenna unit via a signal line (14) connecting the antenna units in series. Each antenna unit controls the gain of a variable gain amplifier so that its output power becomes equal to the target output power.
Abstract:
A base transceiver station (BTS) identifies the number of currently connected antenna units by receiving a signal to which 1 is added in each antenna unit via a signal line (16) connecting the antenna units (AU1 to AUn) in series. The target output power of each antenna unit, which is obtained by dividing the total target output power of the antenna units by the number of currently connected antenna units, is passed to each antenna unit via a signal line (14) connecting the antenna units in series. Each antenna unit controls the gain of a variable gain amplifier so that its output power becomes equal to the target output power.
Abstract:
An electric power leveling controller includes an information acquisition unit that acquires information of electric energy consumption from a power consuming device consuming electric energy from the power source and electric energy charged into a power storage device, a storage unit that stores a specific threshold value for each power storage device, and a control unit that causes a first power consuming device to be power-supplied by the power source, causing the power storage device corresponding to the first power consuming device to be charged with a difference between the specific threshold value and the electric energy consumption, causing the power source to supply to a second power consuming device electric energy corresponding to the specific threshold, and causing the power storage device corresponding to the second power consuming device to discharge to the second power consuming device the difference between the electric energy consumption and the specific threshold value.