摘要:
A thermoelectric conversion module includes two substrates, electrodes, thermoelectric conversion elements provided between the substrates and electrically connected in series via the electrodes, a polygonally-shaped thermoelectric conversion element disposition area provided on inner surface of the substrate wherein the thermoelectric conversion elements are disposed in the thermoelectric conversion element area, a fin radiator provided on outer surface of the substrate and a fin disposition area wherein the fin radiator is disposed in the fin disposition area. The fin disposition area and the thermoelectric conversion element disposition area are located on opposite sides of the substrates so as to overlap each other via the substrate. Part of each of the thermoelectric conversion elements located at least one corner of the thermoelectric conversion element disposition area is located outside the fin disposition area when the fin disposition area is projected on the thermoelectric conversion element disposition area.
摘要:
A method for manufacturing a display, where the display includes a light-transmissive substrate adhering to a display substrate that forms a display surface side of a display body. An edge of at least either an adhesion surface of the display substrate or an adhesion surface of the light-transmissive substrate is coated with an adhesive. The display substrate and the light-transmissive substrate are positioned in an offset manner to provide overlapping and non overlapping regions. For example, an edge of each of two adhesion surfaces overlap with each other, and other regions do not overlap with each other. The display substrate and the light-transmissive substrate are relatively moved to a position where an edge of the display substrate and an edge of the light-transmissive substrate respectively overlap with other edges in a state in which adhesive reservoirs are formed while maintaining a fixed gap between the two adhesion surfaces.
摘要:
In a display manufacturing method including bonding of a light-transmissive substrate onto a display surface of a display body, the bonding includes bending the light-transmissive substrate into an arch-like shape with a bonding surface thereof having a convex shape. An adhesive sandwiched is put between a bonding surface of the display body and a top of a bonding surface of the bent light-transmissive substrate. The bend of the light-transmissive substrate is released while moving two rollers from a center of the light-transmissive substrate in a direction of the bend of the light-transmissive substrate towards both terminal edges of the light-transmissive substrate in mutually reverse directions. The two rollers press a non-bonding surface of the light-transmissive substrate against the display body.
摘要:
In a display manufacturing method including bonding of a light-transmissive substrate onto a display surface of a display body, the bonding includes bending the light-transmissive substrate into an arch-like shape with a bonding surface thereof having a convex shape. An adhesive sandwiched is put between a bonding surface of the display body and a top of a bonding surface of the bent light-transmissive substrate. The bend of the light-transmissive substrate is released while moving two rollers from a center of the light-transmissive substrate in a direction of the bend of the light-transmissive substrate towards both terminal edges of the light-transmissive substrate in mutually reverse directions. The two rollers press a non-bonding surface of the light-transmissive substrate against the display body.
摘要:
A double-wall structure (1), comprising plate-like bodies (2) and (3) disposed oppositely to each other to form an inner room (4) therebetween, peripheral members (5) disposed so that the inner room (4) can be completely or approximately closed, and perforated plates (13) with a large number of holes (8) disposed between the plate-like bodies facing each other. The double-wall structure is characterized in that an air layer (A) is interposed between the perforated plates and the peripheral members. Thus, since the double-wall structure can suppress the deterioration of a sound reduction index for sound with specific frequencies, it can stably develop sound insulation performance for sound with the various frequencies.
摘要:
A sound-absorbing structure body according to the present invention comprises a ridge-groove board (11) formed with a large number of ridges and grooves, a closing board (15) joined to the ridge-groove board so as to close one side of the ridge-groove board and thereby form a hollow portion (13), a partition board (21) for partitioning the hollow portion (13) into two or more partitioned spaces (22a, 22b), and two or more holes (25a, 25b) opened in the ridge-groove board so as to bring into communication with each of the two or more partitioned spaces (22a, 22b).
摘要:
The present invention relates to a heat-bonded type vibration-damping resin for a structural member which contains in view of a preferable blending rate asphalt, synthetic rubber, petroleum resin and filler material, and further a heat-bonded type vibration-damping resin for a structural member which contains in view of a preferable blending rate asphalt, filler material, blowing agent. In addition, its basic concept consists in a configuration in which the vibration-damping resin is formed into a sheet and arranged at the surface of the metallic structure used at a place where vibration and noise should be prevented so as to form the vibration-damping structure and a method for manufacturing the vibration-damping structure. The vibration-damping resin can be easily mounted on the surface of the metallic structure having an elongated shape, bonded to it by heating and has a workability in which the mounting work to the metallic plate may be facilitated. In addition, thermoplastic resin and the like can be arranged between the metallic plate and the vibration-damping resin.
摘要:
A sound absorbing structure having excellent in sound absorbing performance, which is capable of achieving 0.4 or higher in the sound absorbing coefficient even in the case where a perforated panel is a thin plate such as aluminum foil within a range where a reduction in the weight of a vehicle body is not impaired and through holes have a large hole diameter in order to make the processing of providing a large number of through holes in the perforated panel. The sound absorbing structure 1 is the sound absorbing structure 1 for suppressing noise generated on a sound source side, which is equipped with: a perforated panel 2 having a large number of through holes 3 and a fiber material 4, which are provided so as to face the sound source side and provided so as to overlap with each other; and an air layer 5 provided behind the perforated panel 2, in which the density and the thickness of the fiber material 4 and the hole diameter and the aperture rate of the through holes 3 of the perforated panel 2 severally have a specific relationship.
摘要:
A highly reliable ultra-high pressure mercury discharge lamp with a low risk of breakage of the quartz tube. The ultra-high pressure mercury discharge lamp includes a light emitting tube 2 in which a pair of electrode systems 24a, 24b is enclosed within a quartz tube. The pair of electrode systems 24a, 24b is outfitted with an electrode 21a, 21b having a weld 21a-2, 21b-2, a metal strip 22a, 22b with one end that is welded to the weld 21a-2, 21b-2, and a connection line 23a, 23b connected to the other end of the metal strip 22a, 22b. An aperture portion 22a-1, 22b-1 is provided in the metal strip 22a, 22b in the area surrounding the weld 21a-2, 21b-2.
摘要:
To provide an oil separator including multiple cones and having a simple structure and high trapping efficiency for oil mist. An oil separator can include multiple cones arranged in a line and a chamber for blow-by gas, which is formed in adjacent to the line of the cones, and arranged at an upper side surface of the cones, the chamber being provided with a flow-in port at a position in front of the line of the cones, in which upper outer peripheral walls of the cones at portions facing the chamber constitute partition walls provided with slits, which constitute inlets for the blow-by gas to enter the cones.