摘要:
Feedback for map information is based on an integrated navigation solution for a device within a moving platform using obtained motion sensor data from a sensor assembly of the device, obtained radar measurements for the platform and obtained map information for an environment encompassing the platform. An integrated navigation solution is generated based at least in part on the obtained motion sensor data using a nonlinear state estimation technique that uses a nonlinear measurement model for radar measurements. The map information is assessed based at least in part on the integrated navigation solution and radar measurements so that feedback for the map information can be provided.
摘要:
The present disclosure relates to a method and apparatus for enhancing a navigation solution of a device within a platform (such as for example person, vehicle or vessel), wherein the mobility of the device may be constrained or unconstrained within the platform, and wherein the device can be tilted to any orientation including vertical or near vertical orientations, while still providing a seamless navigation solution. This method can enhance navigation solutions utilizing measurements from sensors (such as, for example, accelerometers, gyroscopes, magnetometers, etc.), whether in the presence or in the absence of absolute navigational information (such as, for example, GNSS or WiFi positioning).
摘要:
The present disclosure relates to a method and apparatus for enhancing a navigation solution of a device within a platform (such as for example person, vehicle or vessel), wherein the mobility of the device may be constrained or unconstrained within the platform, and wherein the device can be tilted to any orientation including vertical or near vertical orientations, while still providing a seamless navigation solution. This method can enhance navigation solutions utilizing measurements from sensors (such as, for example, accelerometers, gyroscopes, magnetometers, etc.), whether in the presence or in the absence of absolute navigational information (such as, for example, GNSS or WiFi positioning).
摘要:
The present disclosure relates to a method and apparatus for determining the misalignment between a device and a pedestrian, wherein the pedestrian can carry, hold, or use the device in different orientations in a constrained or unconstrained manner, and wherein the device comprises a sensor assembly. The sensors in the device may be for example, accelerometers, gyroscopes, magnetometers, barometer among others. The sensors have a corresponding frame for the sensors' axes. The misalignment between the device and the pedestrian means the misalignment between the frame of the sensor assembly in the device and the frame of the pedestrian. The present method and apparatus can work whether in the presence or in the absence of absolute navigational information updates (such as, for example, Global Navigation Satellite System (GNSS) or WiFi positioning).
摘要:
A navigation module and method for providing an INS/GNSS navigation solution for a moving platform, comprising a receiver for receiving absolute navigational information from an external source (e.g., such as a satellite), means for obtaining speed or velocity information and an assembly of self-contained sensors capable of obtaining readings (e.g., such as relative or non-reference based navigational information) about the moving platform, and further comprising at least one processor, coupled to receive the output information from the receiver, sensor assembly and means for obtaining speed or velocity information, and operative to integrate the output information to produce a navigation solution. The at least one processor may operate to provide a navigation solution by using the speed or velocity information to decouple the actual motion of the platform from the readings of the sensor assembly.
摘要:
The present disclosure relates to a method and apparatus for determining the misalignment between a device and a pedestrian, wherein the pedestrian can carry, hold, or use the device in different orientations in a constrained or unconstrained manner, and wherein the device comprises a sensor assembly. The sensors in the device may be for example, accelerometers, gyroscopes, magnetometers, barometer among others. The sensors have a corresponding frame for the sensors' axes. The misalignment between the device and the pedestrian means the misalignment between the frame of the sensor assembly in the device and the frame of the pedestrian. The present method and apparatus can work whether in the presence or in the absence of absolute navigational information updates (such as, for example, Global Navigation Satellite System (GNSS) or WiFi positioning).
摘要:
An apparatus and method are disclosed for enhancing a navigation solution of a portable device and a platform. Motion sensor data may be obtained corresponding to motion of the portable device, such that a first filter may be configured to output a navigation solution and at least one second filter may be configured to use the motion sensor data to generate at least one value. The at least one generated value may then be used with the first filter to enhance the navigation solution output by the first filter.
摘要:
Systems and methods are disclosed for providing a plurality of navigation solutions using a portable sensor device associated with a user. Motion sensor data may be used to derive a first navigation solution using the obtained sensor data under a first set of processing conditions navigation solution and to derive at least a second navigation solution using the sensor data under a second set of processing conditions, wherein the second navigation solution is refined as compared to the first navigation solution. As such, the second navigation solution may represent a more accurate or more complete solution, with the first navigation solution may represent a reduced expenditure of resources. The system includes the portable sensor device and optionally may include an auxiliary device associated with the user and/or remote processing resources. The functions associated with deriving the first and second navigation solutions may be performed by any one or any combination of the portable sensor device, the auxiliary device and/or the remote processing resources.
摘要:
Systems and methods are disclosed for categorizing a device use case for on foot motion with a portable device. Motion sensor data corresponding to motion of the portable device may be obtained, such as from a sensor assembly of the device. The motions sensor data is processed. Further, a use case characteristic may be determined from the processed and/or raw motion sensor data, an effective frequency may be determined from the processed and/or raw motion sensor data and/or an Eigen use case may be determined. The device use case may then be classified using the processed and/or raw motion sensor data and at least one of the use case characteristic, the effective frequency and the Eigen use case.
摘要:
The present disclosure relates to a method and system for estimating varying step length for on foot motion (such as for example walking or running). The present method and apparatus is able to be used in anyone or both of two different phases. In some embodiments, the first phase is used. In some other embodiments, the second phase is used. In a third group of embodiments, the first phase is used, and then the second phase is used. The first phase is a model-building phase done offline to obtain the nonlinear model for the step length as a function of different parameters that represent human motion dynamics. A nonlinear system identification technique is used for building this model. In the second phase the nonlinear model is used to calculate the step length from the different parameters that represent human motion dynamics used as input to the model. These parameters are obtained from sensors readings from the sensors in the apparatus. This second phase is the more frequent usage of the present method and apparatus for a variety of applications.