Abstract:
The proposal is for a heating/cooling device for vehicles, in particular motor vehicles with electric drive, having a refrigerant circuit, which comprises a compressor (3), a gas cooler (5), an evaporator (7) and an expansion valve arranged between the gas cooler (5) and the evaporator (7). The heating/cooling device is characterized in that the gas cooler (5) interacts with a first liquid coolant circuit (9), and the evaporator (7) interacts with a second liquid coolant circuit (11), wherein an interior heat exchanger (17) can be assigned to the first or the second liquid coolant circuit (9, 11), and wherein an external-air heat exchanger (19) can be assigned to the first or the second liquid coolant circuit (9, 11).
Abstract:
The invention relates to a compressor, particularly for air conditioners in motor vehicles, comprising a safety device for limiting high pressure, whereby the safety device is hermetically sealed until first responding, after which it slowly reduces the system pressure.
Abstract:
An absorbent article, preferably a disposable absorbent article such as a diaper, is disclosed that provides an improved immobilization of absorbent polymer material when the article is fully or partially urine loaded. This absorbent core is useful for providing an absorbent article of increased wearing comfort. Specifically disclosed is an absorbent core useful for an absorbent article comprising a substrate layer and absorbent material, the absorbent material comprising an absorbent polymer material, the absorbent material optionally comprising absorbent fibrous material, the absorbent fibrous material not representing more than 20% of the weight of absorbent polymer material, wherein the absorbent material is immobilized when wet such that the absorbent core achieves a wet immobilization of more than 50%, preferably of more than 60%, 70%, 80% or 90% according to the Wet Immobilization Test described herein.
Abstract:
An absorbent article, preferably a disposable absorbent article such as a diaper, is disclosed that provides an improved immobilization of absorbent polymer material when the article is fully or partially urine loaded. This absorbent core is useful for providing an absorbent article of increased wearing comfort. Specifically disclosed is an absorbent core useful for an absorbent article comprising a substrate layer and absorbent material, the absorbent material comprising an absorbent polymer material, the absorbent material optionally comprising absorbent fibrous material, the absorbent fibrous material not representing more than 20% of the weight of absorbent polymer material, wherein the absorbent material is immobilized when wet such that the absorbent core achieves a wet immobilization of more than 50%, preferably of more than 60%, 70%, 80% or 90% according to the Wet Immobilization Test described herein.
Abstract:
Producing high temperature-resistant technical paper, wherein fibers are mixed with a wet paper material pulp and then technical paper is produced from the pulp by the removal of water from the pulp and resulting compacting of the paper material, it is proposed that the fibers added to the wet pulp are fibers which have been cut and previously thermally pre-shrunk so that in practical use under high temperature conditions the finished technical paper experiences a low degree of thermal shrinkage of less than 1%.
Abstract:
Time-of-flight mass spectrometer with a position-sensitive detector (20) for determining energy and pulse of photodissociated ions, the detector (20-24) comprising one or a plurality of electron multipliers (21, 22) and an anode array (23) arranged behind the electron multipliers for determining the position of impringement of the ions, and the time-of-flight mass spectrometer including devices (30-33) for determining the time of flight of the ions.
Abstract:
A monitoring system and process is provided for at least two medical apparatuses, which can send at least one alarm signal each. At least one alarm unit is connected to these apparatuses, wherein the alarm unit has at least one processing unit, a memory unit and an output unit. The processing unit assigns priorities to the alarm signals, and an assignment list of the distribution of the priorities of the individual alarms is stored in the memory unit.
Abstract:
For milling root butts on round timber, a trunk is clamped at a predetermined location and non-rotatable, a milling shaft with a milling tool is brought into abutment against the trunk, the milling tool mills in the trunk butt in the abutment region to a predetermined radial depth, then by a rotary device it is moved around the trunk and mills the root butt over the entire trunk periphery with controlling of the respective radial depth of the milling shaft by a sensor arranged to sense the outer surface of the trunk.
Abstract:
An axial piston machine, in particular to an air-conditioning compressor for motor vehicles, including a drive unit for taking-in and compressing a pressure medium The drive unit is rotatably driven by a shaft, the rotatable movement of the shaft is convertible into the reciprocating motion of the pistons in the drive unit and the shaft is mounted in the casing of the axial piston machine, in particular by an axial bearing.
Abstract:
A connector (10) is provided for sterile connection to a complementary connector (12). The connector (10) has a housing (14) with an engagement device (16) to engage a complementary engagement device (18) of the complementary connector (12) along an engagement direction (44). The connector (10) is displaceable relative to the complementary connector (12) along the engagement direction (44) after the engagement device (16) engages the complementary engagement device (18). The housing (14) has a feed-through opening (24) for receiving a sensor (34) and a cover (22). The cover (22) is displaced relative to the connector (10) along the engagement direction (44) to close the feed-through opening (24) in a sterile manner. The connector (10) also has a sterile sensor (34) that is movable along a sensor displacement direction (52) that differs from the engagement direction (44).