Abstract:
A lubricant composition characterized as having a viscosity of less than about 150,000 cP at −40° C., a kinematic viscosity of less than about 150,000 cSt at −40° C., and a kinematic viscosity of at least about 18.5 cSt at 100° C. for use in association with a device involving metal to metal contact of moving parts comprising: (a) base-stock comprising (i) at least one relatively low viscosity polyalphaolefin, (ii) at least one ester, and at least one Group III base oil; (b) viscosity improver comprising (i) at least one relatively high viscosity polyalphaolefin, and (ii) a least one olefin copolymer; (c) a performance additive comprising at least one additive effective to improve at least one property of the lubricant and/or the performance of the equipment in which the lubricant is to be used; (d) at least one pour-point depressant; and, optionally, (e) at least one antifoam agent.
Abstract:
A lubricant composition characterized as having a viscosity of less than about 150,000 cP at −40° C., a kinematic viscosity of less than about 150,000 cSt at −40° C., and a kinematic viscosity of at least about 18.5 cSt at 100° C. for use in association with a device involving metal to metal contact of moving parts comprising: (a) base-stock comprising (i) at least one relatively low viscosity polyalphaolefin, (ii) at least one ester, and at least one Group III base oil; (b) viscosity improver comprising (i) at least one relatively high viscosity polyalphaolefin, and (ii) a least one olefin copolymer; (c) a performance additive comprising at least one additive effective to improve at least one property of the lubricant and/or the performance of the equipment in which the lubricant is to be used; (d) at least one pour-point depressant; and, optionally, (e) at least one antifoam agent.
Abstract:
Disclosed are low VOC defoaming agents comprising at least one active defoaming compound or combination of defoaming compounds, and a liquid carrier comprising one or more organic compounds having a viscosity of less than about 100 centistokes (cSt) at 40° C. as measured by ASTM D445, having a VOC content as measured by ASTM method D3960 “Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings” of not greater than about 1% by weight.
Abstract:
A lubricant composition characterized by the Society of Automotive Engineers (“SAE”) as 75W-140 capable of meeting the American Petroleum Institute's (“API”) GL-5 performance classification requirements for use in association with a device involving metal to metal contact of moving parts comprising: (a) base-stock comprising (i) at least one relatively low viscosity polyalphaolefin, and (ii) at least one diester; (b) viscosity improver comprising (i) at least one relatively high viscosity polyalphaolefin, and (ii) polyisobutylene; and (c) a performance additive comprising at least one additive effective to improve at least one property of the lubricant and/or the performance of the equipment in which the lubricant is to be used.
Abstract:
Additives are produced by (i) reacting an O,O-dihydrocarbyl phosphorodithioic acid with a monoepoxide or mixture of monoepoxides having in the range of 20 to about 30 carbon atoms in the molecule, (ii) reacting the product with phosphorus pentoxide to produce an acid phosphate intermediate, and (iii) neutralizing the intermediate with at least one amine. At least 50 mole % , and preferably all, of the hydrocarbyl groups of the O,O-dihydrocarbyl phosphorodithioic acid are secondary acyclic hydrocarbyl groups free of acetylenic unsaturation. The balance, if any, of such hydrocarbyl groups are primary acyclic hydrocarbyl groups free of acetylenic unsaturation. The additives are multifunctional in that they have limited slip properties, antiwear/extreme pressure properties, and corrosion inhibiting properties.
Abstract:
Disclosed are low VOC defoaming agents comprising at least one active defoaming compound or combination of defoaming compounds, and a liquid carrier comprising one or more organic compounds having a viscosity of less than about 100 centistokes (cSt) at 40° C. as measured by ASTM D445, having a VOC content as measured by ASTM method D3960 “Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings” of not greater than about 1% by weight.
Abstract:
One aspect of the present invention relates to the use of a polyamide as a binder for printing inks, wherein the polyamide is a reaction product (P) of (1) one or more compounds which are chosen from the group of primary and/or secondary monoamines and polyamines with (2) a dimer fatty acid and (3) a carboxylic monoacid, with the proviso that the dimer fatty acid (2) building block of (P) contains at least 30% by weight of monomer fatty acid.
Abstract:
Mixtures of the reaction product of at least one C5-C60 carboxylic acid and at least one amine selected from the group consisting of guanidine, aminoguanidine, urea, thioruea and salts thereof and a phosphorus-containing dispersant are useful as gear oil additives. Lubricant formulations containing said mixtures exhibit excellent low and high temperature rheology and are particularly suited for use in automotive and industrial gear applications. Lubricants of the present invention exhibit improved performance properties such as increased axle efficiencies and lower axle temperatures compared to lubricant formulations that do not contain said mixtures.
Abstract:
The reaction product of at least one C5-C60 carboxylic acid and at least one amine selected from the group consisting of guanidine, aminoguanidine, urea, thioruea and salts thereof is useful as a gear oil additive. The lubricant formulations exhibit excellent low and high temperature rheology and are particularly suited for use in automotive and industrial gear applications. Lubricants of the present invention exhibit improved performance properties, such as increased axle efficiencies and lower axle temperatures, improved limited slip performance, reduced chatter, improved frictional durability and/or improved power divider performance compared to lubricant formulations that do not contain said reaction products.
Abstract:
One aspect of the present invention relates to the use of a polyamide as a binder for printing inks, wherein the polyamide is a reaction product (P) of (1) one or more compounds which are chosen from the group of primary and/or secondary monoamines and polyamines with (2) a dimer fatty acid and (3) a carboxylic monoacid, with the proviso that the dimer fatty acid (2) building block of (P) contains at least 30% by weight of monomer fatty acid.