Abstract:
A composite-based rim and methods for manufacturing such a rim are provided. The rim includes multiple fiber-based, co-mingled layers, wherein the strength and/or stiffness of the layers increases from the innermost layer of the rim to the outermost layer of the rim, but where the radial stress and strain generated in the rim decreases from the innermost layer to the outermost layer. Incorporation of this rim into a high stress and strain usage environment, such as a flywheel system, allows the rim to be spun at high speeds in order to generate high levels of kinetic energy while beneficially managing the amount of strain and radial stresses generated within the rim, and, in turn, minimizing or at least controlling the formation and propagation of cracks within the rim.
Abstract:
A composite-based rim and methods for manufacturing such a rim are provided. The rim includes multiple fiber-based, co-mingled layers, wherein the strength and/or stiffness of the layers increases from the innermost layer of the rim to the outermost layer of the rim, but where the radial stress and strain generated in the rim decreases from the innermost layer to the outermost layer. Incorporation of this rim into a high stress and strain usage environment, such as a flywheel system, allows the rim to be spun at high speeds in order to generate high levels of kinetic energy while beneficially managing the amount of strain and radial stresses generated within the rim, and, in turn, minimizing or at least controlling the formation and propagation of cracks within the rim.