Abstract:
Discloses apparatus to perform a process to remove water and minerals from a bitumen froth output of a oil sands hot water extraction process. A bitumen froth feed stream is diluted with a solvent and supplied to a primary inclined plate separator stage, which separates the bitumen into an overflow stream providing a bitumen product output from the circuit and a bitumen depleted underflow stream. A primary cyclone state, a secondary inclined plate separator stage and a secondary cyclone stage further process the underflow stream to produce a secondary bitumen recovery product stream and a recycle stream. The secondary bitumen recovery product stream is incorporated into and becomes part of the circuit bitumen product output stream. The recycle stream is incorporated into the bitumen froth feed stream for reprocessing by the circuit.
Abstract:
An apparatus for processing oil sand to produce a liquid stream comprising water and bitumen and a solid stream comprising solid particles, and a method and control system for controlling the apparatus. The apparatus includes a drum having first and second ends, a conditioning zone adjacent the first end, a compressing zone adjacent the second end and a processing zone therebetween. A rotatable spiral trough, having lifting members therein, extends through each zone for imparting a spiral rolling motion to the oil sand. An oil sand inlet communicates with the conditioning zone, while a water inlet communicates with the processing zone. A liquid stream outlet is located at the first end of the drum, while a solid stream outlet is located adjacent the second end. Preferably, the spiral trough has a width through the compressing zone less than through the processing zone and a height through at least a portion of the compressing zone greater than through the processing and conditioning zones.
Abstract:
An inline bitumen froth steam heater system is comprised of steam injection and static mixing devices. The steam heater system heats and de-aerates an input bitumen froth without creating downstream processing problems with the bitumen froth such as emulsification or live steam entrainment. The inline bitumen froth steam heater is a multistage unit that injects and thoroughly mixes the steam with bitumen resulting in an output bitumen material having a homogenous temperature of about 190° F. The heating system conditions a superheated steam supply to obtain saturated steam at about 300° F. The saturated steam is contacted with a bitumen froth flow and mixed in a static mixer stage. The static mixers provide a surface area and rotating action that allows the injected steam to condense and transfer its heat to the bitumen froth. The mixing action and the increase in temperature of the bitumen froth results in reduction in bitumen viscosity and also allows the release of entrapped air from the bitumen froth.
Abstract:
An apparatus to perform a process to remove water and minerals from a bitumen froth output of a oil sands hot water extraction process comprises: (i) a cyclone body having an elongated conical inner surface defining a cyclone cavity extending from an upper inlet region with a diameter DC to a lower apex outlet with a diameter DU; (ii) an inlet means forming an inlet channel extending into the upper inlet region of the cyclone cavity; and (iii) a vortex finder forming an overflow outlet of a diameter (DO) extending into the upper inlet region of the cyclone cavity toward the lower apex outlet and having a lower end extending an excursion distance below the inlet channel; wherein a fluid composition entering the inlet channel into the cyclone cavity is urged by force of gravity and velocity pressure downward toward the lower apex and variations in density of the constituent components of the fluid composition cause the lighter component materials to be directed toward the overflow outlet of the vortex finder.
Abstract:
A vehicle antenna tester utilizes a transformer having three secondary windings, two of which operate a pair of incandescent lamps, the third of which being capable of operating a neon lamp. The first of the pair of lamps is energized by completing a circuit involving a pair of clamps, one of which is attached to chassis ground of the vehicle, while the other is attached to the shielding conductor at selective locations therealong, of the lead cable feeding the antenna to be tested. The other lamp is energized when a circuit is completed between selective locations along the length of the antenna and the isolated conductor feeding it and the third clamp of the present invention. The neon lamp will glow upon the presence of leakage resistance or a short circuit between the antenna and its associated isolated conductor and the shielding conductor or chassis ground. The apparatus is particularly useful in testing antenna and lead wire assemblies before and after installation to the vehicle, determining faulty grounding of the shielding conductor, breaks in the continuity of the lead wire and antenna proper and leakage paths between the antenna and the isolated conductor to chassis ground or the shielding conductor.
Abstract:
A bitumen recovery process is provided which includes the step of providing a bitumen froth or a component derived from the bitumen froth as a feed material, wherein the bitumen froth is produced in a primary separation process from a slurry comprising oil sand and water. Further, the process includes the step of subjecting the feed material to froth flotation in a column flotation cell in order to recover a bitumen product from the feed material. Preferably, the froth flotation cell includes an underwash zone, wherein a bitumen-rich fraction of the feed material is passed through the underwash zone as the bitumen-rich fraction rises within the column flotation cell.
Abstract:
An apparatus for separating bitumen from a bitumen froth output of a oil sands hot water extraction process comprises an inclined plate separator (IPS) for providing a first bitumen separation stage and a cyclone for providing a second bitumen separation stage. The cyclone overflow is recycled to the IPS inlet.