Abstract:
Methods and systems for detecting radiation for example, terahertz radiation, with the aid of acoustic signal generation and detection include: directing an optical beam into a volume of gas; ionizing at least a portion of the volume of gas with the optical beam to produce a plasma; and detecting an acoustic signal produced from an interaction of a radiation wave with the plasma. The methods and systems are particularly adapted for remote detection of chemicals, biological substances, and explosives, among others. The capability of the methods and systems can be enhanced by employing multi-color laser excitation to produce the plasma and varying the time delay between the multi-color pulses.
Abstract:
A broadband anti-reflection apparatus for use with terahertz radiation includes a layer having an outer surface comprising a plurality of pyramid structures having about a 30 μm to about a 110 μm period, and wherein reflectance of the terahertz radiation is reduced compared to a layer comprising a planar outer surface. Also disclosed is a method for modifying terahertz radiation which includes receiving terahertz radiation on a device having an anti-reflection layer having an outer surface comprising a plurality of pyramid structures having about a 30 μm to a 110 μm period, and modifying the terahertz radiation passing through the device or processing the terahertz radiation in the device.
Abstract:
A method for generating amplified terahertz radiation includes inducing a first volume of a gas to produce a seed plasma and emit pulsed seed terahertz radiation by focusing an optical seed beam in the first volume. The seed terahertz radiation is then amplified by focusing an optical gain beam to produce a gain plasma in a second volume overlapping with the pulsed seed terahertz radiation remote from the seed plasma. The method may be implemented in a system for detecting and analyzing a remotely-located object such as an explosive material, a biological agent, and a chemical agent.
Abstract:
A microscope for producing an image of a target using THz radiation. The microscope comprises a source for providing an optical pump pulse and an optical probe pulse; a THz emitter for activation by pump pulse to emit a THz pulse that irradiates the target to form a target-modified THz pulse; a THz detector for modulating the probe pulse with the target-modified THz pulse to create a modulated optical probe pulse characteristic of the target; an optical detection system for modifying and detecting the modulated optical probe pulse and converting the modulated optical probe pulse to electronic information; and a processor for receiving the electronic information and producing an image of the sample using the electronic information. The THz emitter and detector comprise one or more EO crystals. The target is positioned on one of the EO crystals in a near-field of the THz pulse.
Abstract:
Characterization of free-space electromagnetic energy pulses (15) using a chirped optical probe beam is provided. An electro-optic or magneto-optic crystal (14) is positioned such that the free-space radiation and chirped optical probe signal co-propagate, preferably in a co-linear common direction, through the crystal where a temporal waveform of the free-space radiation is linearly encoded onto a wavelength spectrum of the chirped optical probe signal. The temporal waveform of the free-space radiation is then reconstructed using, for example, a dynamic subtraction of the spectral distribution of the chirped optical probe signal without modulation from the spectral distribution of the chirped optical probe signal with modulation by the free-space radiation.
Abstract:
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a pratical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.
Abstract:
A source of collimated beam or beams of microwave electromagnetic radiation pulses comprises a photoconductor substrate having a major surface and an optical radiation source providing a beam of optical radiation pulses for illuminating at least a relatively large aperture region of the major surface. A static electric field, intrinsic or applied, is present at the major surface for driving transient photocurrents generated by the beam of optical radiation pulses. Each beam of microwave electromagnetic radiation pulses emitted from the photoconductor substrate may be steered by varying the angle of incidence of the beam of optical radiation pulses illuminating the major surface, by varying the period of the spatial variation of a static electric field applied to the major surface by means of electrodes, or by varying the period or direction of a periodic intensity variation of a spatially modulated beam of optical radiation pulses on the major surface.
Abstract:
The present technology provides methods and compositions for the treatment of tissue-damage related immune dysregulation by administering a composition comprising one or more of CD24; CD24 fragments, variants and derivatives, CD24Fc fusion proteins; HMBG1-binding proteins, binding proteins to HMBG1 Box B; antagonists of HMGB1, polyclonal, monoclonal, recombinant, chimeric, humanized scFv antibodies and antibody fragments to HMGB1 or fragments of HMGB1 and antibodies that bind and suppress the activity of HMGB1 Box B; Siglec 10 agonists such as anti-Siglec 10 antibodies; and combinations thereof to a patient.
Abstract:
Methods and systems for characterizing a plasma with radiation, particularly, terahertz (THz) radiation, are disclosed. The disclosed method of characterizing a plasma includes directing THz radiation into the plasma; and detecting an emission due to interaction of the THz radiation with the plasma to characterize the plasma. A disclosed plasma characterizing device includes a means for directing THz radiation into a plasma; and a detector adapted to detect an emission emitted by the plasma due to interaction of the THz radiation with the plasma to characterize the plasma. A plasma characterizing system is also disclosed. The emission detected may be a fluorescence, a variation in fluorescence and/or an acoustic emission.
Abstract:
A method for generating terahertz radiation includes inducing a background plasma in a volume of a gas by focusing a first optical beam in the volume, and generating pulsed terahertz radiation with enhanced generation efficiency by focusing a second time-delayed optical beam in the background plasma. The method may be implemented in a system for detecting and analyzing a remotely-located object.