Abstract:
The present invention is directed to a process for the manufacture of a 2,3,5-trimethylhydroquinone dialkanoate comprising reacting ketoisophorone with an acylating agent in the presence of an indium salt as the catalyst. Preferred are indium(III) salts such as indium trichloride or indium tris (trifluoromethanesulfonate). Further aspects of the present invention are a process for the manufacture of 2,3,5-trimethylhydroquinone using 2,3,5-trimethylhydroquinone dialkanoate as the starting material, especially a process for the manufacture of 2,3,5-trimethylhydroquinone by transesterification of 2,3,5-trimethylhydroquinone dialkanoate, as well as a process for the manufacture of a-tocopherol and its alkanoates, especially of (all-rac)-a-tocopherol and its acetate, comprising the reaction of ketoisophorone to 2,3,5-trimethylhydroquinone dialkanoate according to the present invention. Furthermore, the present invention also deals with a process for the manufacture of formulations of a-tocopherol and its alkanoates, especially of formulations of (all-rac)-a-tocopherol and its acetate, comprising the reaction of ketoisophorone to 2,3,5-trimethylhydroquinone dialkanoate according to the present invention.
Abstract:
The present invention relates to a novel process for the manufacture of alkenylated aromatic compounds featuring at least one hydroxy group, their ring-closure reactions to chroman derivatives, as well as the acylation of the latter and the aromatic compounds featuring at least one hydroxy group themselves. The present invention relates especially to a process for the manufacture of tocol, tocopherols and their alkanoates such as α-tocopherol (TCP) and alkanoates (TCPA) thereof, preferably α-tocopheryl acetate (TCPAc). The processes of the present invention are characterized in that at least one step of the processes is carried out in the presence of an indium salt as the catalyst. Thus, an object of the present invention is the use of an indium salt as the catalyst in Friedel-Crafts alkylation reactions of aromatic compounds featuring at least one hydroxy group and ring-closure reactions of the latter to produce chroman-ring compounds in organic solvents. According to another aspect of the invention indium salts can be used as the catalyst in processes for the manufacture of tocyl alkanoates, tocopheryl alkanoates and alkanoates of aromatic compounds featuring at least one hydroxy group by reacting tocols, tocopherol and aromatic compounds featuring at least one hydroxy group, respectively, with an acylating agent. Suitable indium salts are indium(III) salts, especially indium trichloride, indium tribromide or indium triiodide, indium(III) triflate, indium(III) bis(trifluoromethanesulfonamide) and indium(III) acetate. In preferred embodiments of the invention the processes are carried out at a pressure of at least 0.96 bar, whereby the acylation can be carried out at an absolute pressure of at least 0.02 bar.
Abstract:
The present invention relates to novel processes for the manufacture of chroman derivatives such as α-tocopherol (TCP) and alkanoates thereof, especially α-tocopheryl acetate (TCPA), whereby at least one step of the processes is carried out in the presence of a Lewis acid or a mixture of a Lewis acid with a Bronsted acid as the catalyst under pressure, preferably at an absolute pressure of at least 1.1 bar.As starting materials for the manufacture of TCP and its alkanoates either a mixture of 2,3,5-trimethylhydroquinone (TMHQ) or 2,3,6-trimethylhydroquinone-1-alkanoate (TMHQA) and a compound selected from the group consisting of phytol (PH), isophytol (IP) and (iso)phytol derivatives or 2-phytyl-3,5,6-trimethyl-hydroquinone (PTMHQ)/3-phytyl-2,5,6-trimethylhydroquinone-1-alkanoate (PTMHQA) and/or an isomer thereof are used.Suitable Lewis acids are indium(III) salts and scandium(III) salts. Suitable acid mixtures are iron/iron(II) chloride/hydrogen chloride and zinc(II) chloride/hydrogen chloride.
Abstract:
The present invention relates to novel processes for the manufacture of chroman derivatives such as α-tocopherol (TCP) and alkanoates thereof, especially α-tocopheryl acetate (TCPA), whereby at least one step of the processes is carried out in the presence of a Lewis acid or a mixture of a Lewis acid with a Bronsted acid as the catalyst under pressure, preferably at an absolute pressure of at least 1.1 bar. As starting materials for the manufacture of TCP and its alkanoates either a mixture of 2,3,5-trimethylhydroquinone (TMHQ) or 2,3,6-trimethylhydroquinone-1-alkanoate (TMHQA) and a compound selected from the group consisting of phytol (pH), isophytol (IP) and (iso)phytol derivatives or 2-phytyl-3,5,6-trimethyl-hydroquinone (PTMHQ)/3-phytyl-2,5,6-trimethylhydroquinone-1-alkanoate (PTMHQA) and/or an isomer thereof are used. Suitable Lewis acids are indium(III) salts and scandium(III) salts. Suitable acid mixtures are iron/iron(II) chloride/hydrogen chloride and zinc(II) chloride/hydrogen chloride.
Abstract:
The invention relates to derivatives of pyrazole 3,5-carboxylates, of general formula (I): in which R1, R2, R3, R4, R5, X, Y, V, W and n are as defined herein. The invention also relates to salts of these compounds as well as hydrates or of solvates, enantiomers, diastereoisomers and mixtures thereof. Also disclosed are the methods of preparation and application in therapeutics of compounds of formula (I).
Abstract:
The invention relates to derivatives of pyrazole 3,5-carboxylates, of general formula (I): in which R1, R2, R3, R4, R5, X, Y, V, W and n are as defined herein. The invention also relates to salts of these compounds as well as hydrates or of solvates, enantiomers, diastereoisomers and mixtures thereof. Also disclosed are the methods of preparation and application in therapeutics of compounds of formula (I).
Abstract:
The present invention relates to a process for the manufacture of alkenylated aromatic compounds featuring at least one hydroxy group, their ring-closure reactions to 5 chroman derivatives, as well as the acylation of the latter and the aromatic compounds featuring at least one hydroxy group themselves. The present invention relates especially to a process for the manufacture of tocol, tocopherols and their alkanoates such as (x-tocopherol (TCP) and alkanoates (TCPA) thereof, preferably (x-toeopheryl acetate (TCPAc). The processes of the present invention are characterized in that at least one step of the processes is carried out in the presence of an indium salt as the catalyst.
Abstract:
The present invention relates to novel processes for the manufacture of chroman derivatives such as α-tocopherol (TCP) and alkanoates thereof, especially α-tocopheryl acetate (TCPA), whereby at least one step of the processes is carried out in the presence of a Lewis acid or a mixture of a Lewis acid with a Bronsted acid as the catalyst under pressure, preferably at an absolute pressure of at least 1.1 bar.As starting materials for the manufacture of TCP and its alkanoates either a mixture of 2,3,5-trimethylhydroquinone (TMHQ) or 2,3,6-trimethylhydroquinone-1-alkanoate (TMHQA) and a compound selected from the group consisting of phytol (PH), isophytol (IP) and (iso)phytol derivatives or 2-phytyl-3,5,6-trimethyl-hydroquinone (PTMHQ)/3-phytyl-2,5,6-trimethylhydroquinone-1-alkanoate (PTMHQA) and/or an isomer thereof are used.Suitable Lewis acids are indium(III) salts and scandium(III) salts. Suitable acid mixtures are iron/iron(II) chloride/hydrogen chloride and zinc(II) chloride/hydrogen chloride.
Abstract:
The present invention is directed to a process for the manufacture of a 2,3,5-trimethyl-hydroquinone dialkanoate comprising reacting ketoisophorone with an acylating agent in the presence of an indium salt as the catalyst. Preferred are indium(III) salts such as indium trichloride or indium tris(trifluoromethanesulfonate). Further aspects of the present invention are a process for the manufacture of 2,3,5-tri-methylhydroquinone using 2,3,5-trimethylhydroquinone dialkanoate as the starting mate-rial, especially a process for the manufacture of 2,3,5-trimethylhydroquinone by trans-esterification of 2,3,5-trimethylhydroquinone dialkanoate, as well as a process for the manufacture of a-tocopherol and its alkanoates, especially of (all-rac)-a-tocopherol and its acetate, comprising the reaction of ketoisophorone to 2,3,5-trimethylhydroquinone dialka-noate according to the present invention. Furthermore, the present invention also deals with a process for the manufacture of formulations of a-tocopherol and its alkanoates, especially of formulations of (all-rac)-a-tocopherol and its acetate, comprising the reaction of ketoisophorone to 2,3,5-trimethylhydroquinone dialkanoate according to the present invention.