摘要:
A production method for producing an oxygen sensor, includes spinning a precursor consisting of a salt of at least one metal chosen from Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Sr, Ba, Mn, Co, Mg, and Ga, a solvent, and a macromolecular polymer to produce nanofibers of the precursor containing the salt of the metal. The method further includes calcining the nanofibers of the precursor at a temperature ranging from 550° C. to 650° C. for 2 to 4 hours, and making a solid electrolyte material composed of the nanofibers obtained from the calcining. The resulting solid electrolyte material constitutes a part of the oxygen sensor.
摘要:
A production method for producing a fuel cell, includes spinning a precursor consisting of a salt of at least one metal chosen from Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Sr, Ba, Mn, Co, Mg, and Ga, a solvent, and a macromolecular polymer to produce nanofibers of the precursor containing the salt of the metal. The method further includes calcining the nanofibers of the precursor at a temperature ranging from 550° C. to 650° C. for 2 to 4 hours, and making a solid electrolyte material composed of the nanofibers obtained from the calcining. The resulting solid electrolyte material constitutes a part of a fuel cell.
摘要:
The invention discloses a production method for nanofibers of metal oxide, wherein the metal oxide is a metal oxide of at least one metal selected from Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Zr, Sr, Ba, Mn, Fe, Co, Mg and Ga, comprising: a) spinning a compound precursor containing a salt of the metal, to produce nanofibers of the precursor containing the metal oxide; and b) calcining the nanofibers of the precursor containing the salt of the metal at a temperature in a range of from 500° C. to 800° C., to obtain nanofibers of metal oxide containing the at least one metal element. The invention further discloses nanofibers of metal oxide, a solid electrolyte material, a fuel cell and an oxygen sensor.
摘要:
An example of a circuit for generating high-voltage switching at an output terminal of the circuit includes a pair of n-type metal oxide semiconductor (NMOS) transistors responsive to input signals to generate a first voltage signal in a preset mode. The circuit also includes a predefined number of n-type cascode stages coupled between the output terminal and the pair of NMOS transistors to enable propagation of the first voltage signal to the output terminal. Further, the circuit includes a predefined number of p-type cascode stages coupled to the output terminal to enable propagation of the first voltage signal to an input voltage supply to the circuit. Furthermore, the circuit includes a first pair of cross-coupled p-type metal oxide semiconductor (PMOS) transistors coupled to the input voltage supply. The circuit includes a pair of PMOS transistors, coupled between the first pair of cross-coupled PMOS transistors and the p-type cascode stage.
摘要:
Methods are provided for forming films of orthorhombic V2O5. Additionally provided are the orthorhombic V2O5 films themselves, as well as batteries incorporating the films as cathode materials. The methods use electrodeposition from a precursor solution to form a V2O5 sol gel on a substrate. The V2O5 gel can be annealed to provide an orthorhombic V2O5 film on the substrate. The V2O5 film can be freestanding such that it can be removed from the substrate and integrated without binders or conductive filler into a battery as a cathode element. Due to the improved intercalation properties of the orthorhombic V2O5 films, batteries formed using the V2O5 films have extraordinarily high energy density, power density, and capacity.
摘要翻译:提供了形成斜方晶V2O5薄膜的方法。 另外提供了斜方晶V2O5膜本身以及将膜作为阴极材料的电池。 该方法使用前体溶液的电沉积在基底上形成V 2 O 5溶胶凝胶。 可以对V2O5凝胶进行退火,以在衬底上提供斜方晶V2O5膜。 V2O5膜可以是独立的,使得其可以从基底上移除并且将粘合剂或导电填料整合成电池作为阴极元件。 由于正交V2O5膜的嵌入性能的改善,使用V2O5薄膜形成的电池具有极高的能量密度,功率密度和容量。
摘要:
A production method for producing an oxygen sensor, includes spinning a precursor consisting of a salt of at least one metal chosen from Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Sr, Ba, Mn, Co, Mg, and Ga, a solvent, and a macromolecular polymer to produce nanofibers of the precursor containing the salt of the metal. The method further includes calcining the nanofibers of the precursor at a temperature ranging from 550° C. to 650° C. for 2 to 4 hours, and making a solid electrolyte material composed of the nanofibers obtained from the calcining. The resulting solid electrolyte material constitutes a part of the oxygen sensor.
摘要:
A production method for producing a fuel cell, includes spinning a precursor consisting of a salt of at least one metal chosen from Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Sr, Ba, Mn, Co, Mg, and Ga, a solvent, and a macromolecular polymer to produce nanofibers of the precursor containing the salt of the metal. The method further includes calcining the nanofibers of the precursor at a temperature ranging from 550° C. to 650° C. for 2 to 4 hours, and making a solid electrolyte material composed of the nanofibers obtained from the calcining. The resulting solid electrolyte material constitutes a part of a fuel cell.