Abstract:
A method of forming an integral fastener for a ceramic matrix composite component comprises the steps of forming a fiber preform with an opening, forming a fiber fastener, inserting the fiber fastener into the opening, and infiltrating a matrix material into the fiber preform and fiber fastener to form a ceramic matrix composite component with an integral fastener. A gas turbine engine is also disclosed.
Abstract:
The present invention relates to a metal-halide composite, articles comprising a metal-halide composite and method of making and using same. The metal-halide matrix materials used in such composite have the desired properties of high thermal conductivity, resistance to thermal induced microstructural changes, and ease of use. As a result, they permit the fabrication of higher performance cryogenic magnets, motors, generators, and cables. Additionally, they permit the fabrication of plate reinforced composites that are useful in lightweight armor and other articles. Additionally, an optoelectronic composite could be built depending on the choice of metal-halide matrix and reinforcement.
Abstract:
A method of making a fiber tow coating is provided. The method includes providing a fiber tow selected from the group consisting of carbon and silicon; and applying an oxide-based fiber interface coating onto the fiber tow using directed vapor deposition or other like deposition method.
Abstract:
The present disclosure relates to a method for producing an acoustic attenuation panel having two outer skins made from a composite material with a ceramic matrix containing a fibrous reinforcement. The skins are assembled on each side of a central honeycomb core having walls forming acoustic cavities produced by at least partial electrochemical conversion of aluminum into aluminum oxide. The method includes inserting a fugitive filler material into the acoustic cavities, leaving an annular space free in each cavity, on each side against the skin, extending around the cavity, and a step of sintering the composite material, in which the fugitive material is removed and the spaces around the cavities are filled with the composite material.
Abstract:
A layer by layer additive manufacturing system from liquid polymers for producing dense and defect free polymer-derived ceramic bodies of a three dimensional architecture.
Abstract:
A method for fabricating a ceramic material includes impregnating a porous structure with a mixture that includes a preceramic polymer and a filler. The filler includes at least one free metal. The preceramic polymer material is then rigidized to form a green body. The green body is then thermally treated to convert the rigidized preceramic polymer material into a ceramic matrix located within pores of the porous structure. The same thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or pores of the porous structure.
Abstract:
The disclosure relates generally to a method for reducing the thermal expansion/shrinkage behavior between fiber reinforced plies and monolithic matrix plies, and reducing the macroscopic defects that occur during process of making a ceramic matrix composite article.
Abstract:
The oxide matrix composite material is obtained by subjecting a fiber composed of at least one oxide or complex oxide and a matrix composed of at least one oxide or complex oxide to composite formation. For the fiber and the matrix, a component composition is selected such that the fiber and the matrix keep thermodynamic equilibrium to each other in a temperature range not exceeding the melting temperature, and a fiber diameter of the fiber at the time of equilibrium keeps ½ or more of a fiber diameter of the fiber at the start of the composite formation.
Abstract:
A method for a fabricating a ceramic material includes providing a mixture of a reactive metallic filler material with a preceramic polysilazane material. The preceramic polysilazane material is then polymerized to form a green body. The green body is then thermally treated in an environment that is substantially free of oxygen to convert the polymerized preceramic polysilazane material into a ceramic material that includes at least one nitride phase that is a reaction product of the reactive metallic filler material and a preceramic polysilazane material.
Abstract:
A honeycomb structural body includes honeycomb units that are pillar-shaped and bound together. Each of the honeycomb units includes plural cells, phosphate-based zeolite, and a first inorganic binder. The plural cells extend from a first end face to a second end face in a longitudinal direction of each of the honeycomb units. The plural cells are defined by cell walls. The mat members are interposed between the honeycomb units and include a first inorganic fiber.