Abstract:
A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
Abstract:
A real-time, on-line method and analytical system for determining halohydrocarbons in water which operate by (1) extracting on-line samples; (2) purging volatile halohydrocarbons from the water (e.g., with air or nitrogen); (3) carrying the purge gas containing the analytes of interest over a porous surface where the analytes are adsorbed; (4) recovering the analytes from the porous surface with heat (thermal desorption) or solvent (solvent elution) to drive the analytes into an organic chemical mixture; (5) generating an optical change (e.g., color change) in dependence upon a reaction involving the analytes and a pyridine derivative; and (6) measuring optical characteristics associated with the reaction to quantify the volatile halogenated hydrocarbon concentration.
Abstract:
A method, system, and mixture for simultaneously cleaning and reconditioning at least a part of a sampling pathway of an inline automated mass spectrometry system are disclosed. A sampling pathway including a probe or a nebulizer, in one example, may be simultaneously reconditioned and cleaned by mixing an isotopically enriched species and/or natural abundant species with a cleaning solution, and then cleaning the sampling pathway with the spiked cleaning solution through various means and procedures.
Abstract:
An apparatus and method for improved inline and automated chemical analysis is provided, in particular disclosing signal optimization for an electrospray ionization mass spectrometer apparatus. A substantially inert pathway for ion analysis is provided by using substantially inert metals or polymers for pathway parts. Other enhancements and advantages are also disclosed, including an advantageous probe profile and metal foil cover.
Abstract:
In one embodiment, a method of analysis of a solution is provided including the acts of: (a) mixing a spike with a sample of the solution to allow equilibrium to occur therebetween; (b) ionizing the equilibrated diluted sample and spike in an atmospheric pressure ionizer (API) to produce ions; (c) processing the ions in a mass spectrometer to provide a ratio response; (d) characterizing the concentration of a constituent in the sample using the ratio response; and (e) cyclically repeating acts (a) through (d) under machine control to automatically monitor the concentration of the constituent in the solution over time.