摘要:
A method of making composite nanoscale particles comprising subjecting a starting material to laser energy so as to form a vapor and condensing the vapor so as to form the composite nanoscale particles, wherein said composite nanoscale particles comprise a first metal and/or a first metal oxide incorporated in nanoscale particles of an oxide of a second metal, the first metal being different than the second metal. The starting material can comprise first and second metals or compounds of the first and second metals. The composite nanoscale particles can be formed in a reaction chamber wherein a temperature gradient is provided. The atmosphere in the chamber can be an inert atmosphere comprising argon or a reactive atmosphere comprising oxygen. The composite nanoscale particles are useful for low-temperature and near-ambient temperature catalysis. The composite nanoscale particles can be incorporated in the tobacco cut filler, cigarette paper and/or cigarette filter material of a cigarette to catalyze the oxidation of carbon monoxide to carbon dioxide.
摘要:
A method of making composite nanoscale particles comprising subjecting a starting material to laser energy so as to form a vapor and condensing the vapor so as to form the composite nanoscale particles, wherein said composite nanoscale particles comprise a first metal and/or a first metal oxide incorporated in nanoscale particles of an oxide of a second metal, the first metal being different than the second metal. The starting material can comprise first and second metals or compounds of the first and second metals. The composite nanoscale particles can be formed in a reaction chamber wherein a temperature gradient is provided. The atmosphere in the chamber can be an inert atmosphere comprising argon or a reactive atmosphere comprising oxygen. The composite nanoscale particles are useful for low-temperature and near-ambient temperature catalysis. The composite nanoscale particles can be incorporated in the tobacco cut filler, cigarette paper and/or cigarette filter material of a cigarette to catalyze the oxidation of carbon monoxide to carbon dioxide.
摘要:
A cigarette and cigarette paper have a plurality of multilayer bands formed by printing a highly viscous aqueous film-forming composition. After heating the composition to lower its viscosity, the bands are applied to the cigarette paper by gravure printing the composition. The composition is quenched and gelatinized by contact with the cool cigarette paper reducing absorption of water by the paper and reducing wrinkling, cockling, and waviness. Multiple gravure printed layers may be used to form the bands.
摘要:
A method of making composite nanoscale particles comprising subjecting a starting material to laser energy so as to form a vapor and condensing the vapor so as to form the composite nanoscale particles, wherein said composite nanoscale particles comprise a first metal and/or a first metal oxide incorporated in nanoscale particles of an oxide of a second metal, the first metal being different than the second metal. The starting material can comprise first and second metals or compounds of the first and second metals. The composite nanoscale particles can be formed in a reaction chamber wherein a temperature gradient is provided. The atmosphere in the chamber can be an inert atmosphere comprising argon or a reactive atmosphere comprising oxygen. The composite nanoscale particles are useful for low-temperature and near-ambient temperature catalysis. The composite nanoscale particles can be incorporated in the tobacco cut filler, cigarette paper and/or cigarette filter material of a cigarette to catalyze the oxidation of carbon monoxide to carbon dioxide.
摘要:
Encapsulated catalyst particles can be incorporated in tobacco cut filler and/or cigarette paper used to form a cigarette. The encapsulated catalyst particles, which can decrease carbon monoxide and/or nitric oxide in mainstream tobacco smoke, comprise catalyst particles that are encapsulated with a volatile coating. During the smoking of a cigarette comprising the encapsulated catalyst particles, the volatile coating is volatilized to expose an active surface of the catalyst particles.
摘要:
A method of making intermetallic nanoscale particles comprising iron aluminide and/or iron aluminum carbide comprising the steps of preparing a mixture of a solvent, an iron salt and LiAlH4, and heating the mixture to form the intermetallic nanoscale particles. The intermetallic nanoscale particles, which can comprise intermetallic nanoscale particles of iron aluminide and/or iron aluminum carbide in an alumina matrix, are capable of reducing the amount of 1,3-butadiene in the mainstream smoke of a cigarette.
摘要翻译:一种制备包含铁铝化物和/或铁碳化铝的金属间纳米级颗粒的方法,包括以下步骤:制备溶剂,铁盐和LiAlH 4 S 3的混合物,并加热混合物以形成金属间纳米级 粒子。 可以在氧化铝基质中包含铁铝化物和/或铁铝碳化物的金属间纳米级颗粒的金属间纳米尺寸颗粒能够减少香烟主流烟气中的1,3-丁二烯的量。
摘要:
Process and apparatus are provided for depositing target materials onto the surface of a moving substrate which may be used in the preparation of composites, cigarette filters, cigarette wrapper, bandages, biomedical applications, cosmetic and cleaning materials, and the like. A moving substrate comprising a fibrous mat or paper passes through one or more reaction chambers each having hot and cold regions. At least one target material is positioned in the hot region, and a laser beam ablates the material thereby producing modified additive material. As the substrate moves through the cold region of the reaction chamber, the modified additive material adheres to the exposed surface of the substrate.
摘要:
A method of making Cu, Zn, and/or Cu/Zn alloy nanoparticles subjects one or more targets to laser energy to form a vapor and condenses the vapor to form nanoparticles having an average particle size of less than 20 nm. The optional application of an electric field results in nanoparticles with aspect ratios greater than 1.0. The target(s) can be a single target or separate targets comprising a mixture of copper, zinc, and/or copper/zinc. When separate targets are used, the laser beam can be split to form two separate beams each of which is made incident upon one of the targets. The nanoparticles can be formed in a chamber having an inert atmosphere or a reactive atmosphere and a convection current is created in the chamber by maintaining the top plate at a lower temperature than the bottom plate.