摘要:
Embodiments of a method for forming an MCrAlY coating on a gas turbine engine component are provided, as are embodiments of a method for repairing a structurally-damaged region of a gas turbine engine component utilizing an MCrAlY material. In one embodiment, the method includes the step of preparing an MCrAlY slurry containing an MCrAlY powder, a low melting point powder, a binder, and a dilutant. After application over the gas turbine engine component, the MCrAlY slurry is heated to a predetermined temperature that exceeds the melting point of the low melting point powder to form an MCrAlY coating on the gas turbine engine component. The MCrAlY powder may have any one of a number of different compositions.
摘要:
A method is provided that includes depositing metal powder over a seed crystal having a predetermined primary orientation, scanning an initial pattern into the metal powder to melt or sinter the deposited metal powder, and re-scanning the initial pattern to re-melt the scanned metal powder and form an initial layer having the predetermined primary orientation. The method further includes depositing additional metal powder over the initial layer, scanning an additional pattern into the additional metal powder to melt or sinter at least a portion of the additional metal powder, re-scanning the additional pattern to re-melt a portion of the initial layer and the scanned deposited additional metal powder to form a successive layer having the predetermined primary orientation, and repeating the steps of depositing additional metal powder, scanning the additional pattern, and re-scanning the additional pattern, until a final shape of the component is achieved.
摘要:
Methods are provided for repairing an engine component. In an embodiment, a method includes forming at least one layer of a first braze alloy mixture including about 40% by weight of a first base alloy material and about 60% by weight of a first braze alloy material, over a structural feature of the component. The first braze alloy material includes chromium, cobalt, tungsten, tantalum, aluminum, hafnium, carbon, boron, and a balance of nickel. A second braze alloy mixture is disposed over the at least one layer of the first braze alloy mixture, the second braze alloy mixture including between about 50% and about 60% by weight of a second base alloy material, and between about 40% and about 50% by weight of a second braze alloy material. The component is then subjected to heat treatment, and may be further subjected to machining, coating and final inspection.
摘要:
Methods are provided for forming coating systems on advanced single crystal superalloy turbine airfoils. A method includes applying a layer of an additive material onto a substrate, the additive material comprising a precious metal and the substrate comprising a nickel-based superalloy, diffusion heat treating the substrate to form an intermetallic coating which comprises γ-Ni and γ′-Ni3Al phases alloyed with the additive material and one or more reactive elements from the substrate including hafnium, yttrium, chromium, and silicon, and finally depositing a thermal barrier coating over the intermetallic coating to form the coating system.
摘要:
Intermetallic braze alloys and methods of repairing an engine component are provided. In an embodiment, by way of example only, an intermetallic braze material includes between about 10% to about 15% chromium, by weight, between about 1% to about 3% aluminum, by weight, between about 0.1% to about 0.5% zirconium, by weight, between about 18% to about 25% hafnium, by weight, and a balance of nickel. In another embodiment, by way of example only, an intermetallic braze material includes between about 10% to about 15% chromium, by weight, between about 1% to about 3% aluminum, by weight, between about 10% to about 13% zirconium, by weight, between about 0.3% to about 0.7% hafnium, by weight, and a balance of nickel.
摘要:
Methods are provided for forming a coating system on a gas turbine component. In one embodiment, and by way of example only, the method includes cold spraying a material onto the component surface to form an overlay coating, the material comprising MCrAlY, wherein M comprises a constituent selected from the group consisting of Ni, Co, or Fe, or combinations of Ni, Co, and Fe. Then, the overlay coating is heat treated. The overlay coating is then shot peened and vibro polished. A thermal barrier coating is then applied onto the overlay coating to form the coating system via air plasma spaying or electron beam physical vapor deposition technique.
摘要:
A nickel-based superalloy includes, in terms of weight, in terms of weight, about 0.08% to about 0.12% carbon, about 6.0% to about 6.4% aluminum, about 5.8% to about 6.3% tantalum, about 6.5% to about 7.0% chromium, about 9.3% to about 9.8% cobalt, about 1.3% to about 1.7% molybdenum, about 2.4% to about 2.8% rhenium, about 3.8% to about 4.3% tungsten, about 0.9% to about 1.3% hafnium, about 0.01% to about 0.03% zirconium, up to about 0.10% silicon, and nickel. A method for repairing a surface of a turbine component includes the step of applying the nickel-based superalloy to a damaged area of the component surface, and post-deposition processes.
摘要:
A nickel-based superalloy includes, in terms of weight, about 0.06% to about 0.10% carbon, about 6.0% to about 6.4% aluminum, about 5.8% to about 6.3% tantalum, about 6.5% to about 7.0% chromium, about 8.8% to about 9.3% cobalt, about 0.6% to about 1.0% molybdenum, about 2.4% to about 2.8% rhenium, about 4.8% to about 5.3% tungsten, about 0.3% to about 0.80% hafnium, about 0.01% to about 0.03% zirconium, about 0.10% to about 0.18% silicon, and nickel. A method for repairing a surface of a turbine component includes the step of applying the nickel-based superalloy to a damaged area of the component surface. Post-deposition processes are also performed as necessary.
摘要:
A method for repairing a titanium alloy surface of a turbine component includes the step of cold gas-dynamic spraying a powder material comprising at least one titanium alloy directly on the titanium alloy surface. The method may further include the steps of hot isostatic pressing the cold gas-dynamic sprayed turbine component, and performing a separate heat treating step after the hot isostatic pressing. Thus, the cold gas-dynamic spray process and post-spray processing can be employed to effectively repair degraded areas on compressor turbine components.