Abstract:
Disclosed herein is a Complementary Metal-Oxide-Silicon (CMOS) image sensor. The image sensor includes a two-dimensional pixel array composed of unit pixels, each unit pixel having a photo diode and transistors, a row decoder located at an end of the pixel array to assign row addresses, and a column decoder located at another end of the pixel array, which is erpendicular to the row decoder, to assign column addresses to corresponding pixels in rows selected by the row decoder. The row decoder allows the integration time points of the unit pixels, which are included in the pixel array, to be identical. Accordingly, the distortion of images can be prevented.
Abstract:
Disclosed herein is a Complementary Metal-Oxide-Silicon (CMOS) image sensor The image sensor includes a two-dimensional pixel array composed of unit pixels, each unit pixel having a photo diode and transistors, a row decoder located at an end of the pixel array to assign row addresses, and a column decoder located at another end of the pixel array, which is erpendicular to the row decoder, to assign column addresses to corresponding pixels in rows selected by the row decoder The row decoder allows the integration time points of the unit pixels, which are included in the pixel array, to be identical. Accordingly, the distortion of images can be prevented.
Abstract:
A semiconductor device for lowering a triggering voltage includes a semiconductor substrate with a first conductivity; a semiconductor region formed in the substrate having a second conductivity; a first region formed in the substrate, having the first conductivity and being apart from the semiconductor region; a second region formed in the substrate having the second conductivity and being spaced apart from the semiconductor region and first region; a third region formed in the substrate, having the second conductivity and being spaced apart from the semiconductor region, the first and second regions; a fourth region formed in the semiconductor region, having the second conductivity and being connected to the third region through a conductive material; a fifth region formed in the semiconductor region, having the first conductivity and being spaced apart from the fourth region; and a sixth region formed in the semiconductor region, having the second conductivity and being spaced apart from the fourth and fifth regions.
Abstract:
The present invention relates to a CMOS image sensor. According to the present invention, the CMOS image sensor includes a two-dimensional pixel array (110), a row decoder (130), and a column decoder (150). The two-dimensional pixel array (110) includes rectangular unit pixels each having a width to length ratio of 1:2. The row decoder (130) is placed on one side of the pixel array to designate a row address. The column decoder (150) is placed on another side of the pixel array to be perpendicular to the row decoder and is adapted to extract data of respective pixels from a row selected by the row decoder, amplify the extracted data and generate image data including pixel values. As a result, the present invention is advantageous in that it can easily perform interpolation compared to an image sensor having regular quadrilateral unit pixels.
Abstract:
The present invention relates to a CMOS image sensor. According to the present invention, the CMOS image sensor includes a two-dimensional pixel array (110), a row decoder (130), and a column decoder (150). The two-dimensional pixel array (110) includes rectangular unit pixels each having a width to length ratio of 1:2. The row decoder (130) is placed on one side of the pixel array to designate a row address. The column decoder (150) is placed on another side of the pixel array to be perpendicular to the row decoder and is adapted to extract data of respective pixels from a row selected by the row decoder, amplify the extracted data and generate image data including pixel values. As a result, the present invention is advantageous in that it can easily perform interpolation compared to an image sensor having regular quadrilateral unit pixels.