Abstract:
A laser scanner includes an optical source emitting a laser beam; and an optical deflector deflecting the laser beam emitted from the optical source to scan an object with the laser beam deflected thereby, wherein the optical deflector includes a reflecting mirror; a motor rotating the reflecting mirror around an axis of the mirror: a first member fixed on a shaft of the motor, rotating with the shaft and a second member fixed on the axis of the mirror, engaging with the first member when the shaft rotates to rotate with the axis of the mirror.
Abstract:
A laser scanner includes an optical source emitting a laser beam; and an optical deflector deflecting the laser beam emitted from the optical source to scan an object with the laser beam deflected thereby, wherein the optical deflector includes a reflecting mirror; a motor rotating the reflecting mirror around an axis of the mirror: a first member fixed on a shaft of the motor, rotating with the shaft and a second member fixed on the axis of the mirror, engaging with the first member when the shaft rotates to rotate with the axis of the mirror.
Abstract:
An imaging device able to simplify an optical system, able to reduce costs, and in addition capable of giving a restored image having a suitable quality in accordance with stop control and having a small influence of noise, and an image processing method of same, including an optical system 110 and an imaging element 120 forming a first order image and an image processing device 150 forming the first order image to a high definition last image, wherein a control device 200 detects stop information and controls a switching unit 140 so as to input a dispersed image signal of an object captured by the imaging element 120 via an AFE 130 to the image processing device 150 and input a dispersion-free restored image signal to a camera signal processing unit 160 when not closing the stop down to a predetermined value, while directly input the dispersed image signal of the object captured by the imaging element 120 via the AFE 130 to the camera signal processing unit 160 without passing through the image processing device 150 when closing the stop down to the predetermined value or more.
Abstract:
A surface treated calcium carbonate in which calcium carbonate is surface treated with a fatty acid surface treatment agent satisfying the following equation (a), and the surface treated calcium carbonate satisfying the following equation (b) is provided: C12+C14 85(%) (a) and Pv 90(%), (b) C12 is a ratio of a fatty acid surface treatment agent having an alkyl group of 12 carbon atoms, C14 is a ratio of a fatty acid surface treatment agent having an alkyl group of 14 carbon atoms, and Pv is a ratio of a volume (vol. %) precipitated in hexane. The surface treated calcium carbonate of the present invention can provide the resin compositions having slip resistance and slump resistance with a good balance between them, especially the resin compositions having an excellent slip resistance.
Abstract:
A light source unit includes a light source, a light source support to hold the light source, a fixing member which is attached to the light source support and includes a through-hole through which beams of light emitted from the light source pass, a lens holder inserted into the through-hole and attached to the fixing member by an adhesive; and a collimating lens to collimate the beams of light from the light source, wherein attachment surfaces of the adhesive for the lens holder has a tilted attachment surface tilted relative to the optical axis of the collimating lens.
Abstract:
A light source unit includes a light source, a light source support to hold the light source, a fixing member which is attached to the light source support and includes a through-hole through which beams of light emitted from the light source pass, a lens holder inserted into the through-hole and attached to the fixing member by an adhesive; and a collimating lens to collimate the beams of light from the light source, wherein attachment surfaces of the adhesive for the lens holder has a tilted attachment surface tilted relative to the optical axis of the collimating lens.
Abstract:
An imaging apparatus and an image processing method able to simplify an optical system, able to reduce costs, able to obtain an image blurred only in a background by a single imaging operation, and able to obtain a restored images with little influence of noise, wherein a signal processing portion formed by an image processing device 140 etc. has a generation function of generating a diffusion-free image signal from a diffused image signal of an object from an imaging element 120 and performing other predetermined signal processing on the diffused image signal and combining an image before the processing of this signal processing portion and an image after the processing to form a new image, and, in this generation function, generates a plurality of images in a background region by blurred image processing combines them with a focused image of an object region including a main object after the processing to generate a new image and records the image before the signal processing, the restoration image after the processing, and the combined new image in a memory buffer etc.
Abstract:
An imaging device able to simplify an optical system, able to reduce costs, and in addition capable of giving a restored image having a suitable quality in accordance with stop control and having a small influence of noise, and an image processing method of same, including an optical system 110 and an imaging element 120 forming a first order image and an image processing device 150 forming the first order image to a high definition last image, wherein a control device 200 detects stop information and controls a switching unit 140 so as to input a dispersed image signal of an object captured by the imaging element 120 via an AFE 130 to the image processing device 150 and input a dispersion-free restored image signal to a camera signal processing unit 160 when not closing the stop down to a predetermined value, while directly input the dispersed image signal of the object captured by the imaging element 120 via the AFE 130 to the camera signal processing unit 160 without passing through the image processing device 150 when closing the stop down to the predetermined value or more.
Abstract:
The surface-treated calcium carbonate is disclosed which is surface-treated with an organic surface treating agent, said surface-treated calcium carbonate satisfies the particular BET specific surface area (Sw), reduced heat amount per unit specific surface area (As), average pore diameter (Dxp) at which an increased amount of mercury penetration reaches the maximum value in a method of mercury penetration, and amount of an average pore diameter [maximum value of an increased amount of mercury penetration (Dyp)/average pore diameter (Dxp)]. The surface-treated calcium carbonate of the present invention is particularly useful for resins and it not only improves adhesion of resin compositions to a subject to be adhered, but forms a rigid coating film when blended into resins.
Abstract:
In a power integrated circuit, a voltage-type single-phase full-bridge conversion circuit is used as a basic unit. The basic unit includes a level-shift-type gate drive circuit. An integrated single-phase multi-level conversion circuit is formed by connecting basic units in series. An integrated three-phase multi-level conversion circuit is formed by connecting three basic units in parallel or by connecting three sets of serially connected basic units in parallel. Since the output multi-level voltage waveform of the integrated single-phase or three-phase multi-level conversion circuit is low in harmonic content, it can constitute a single-phase or three-phase power converter without use of a passive filter.