摘要:
A process for fabricating silicon oxide filled, shallow trench isolation (STI), regions, in a semiconductor substrate, featuring the use of a disposable boro-phosphosilicate glass (BPSG), layer, used for planarization of various width, silicon oxide filled, STI regions, has been developed. After completely filling all STI shapes with a high density plasma (HDP), silicon oxide layer, resulting in a non-planar, HDP silicon oxide top surface topography, a BPSG layer is deposited. An anneal procedure is then performed resulting in a planar top surface topography of the reflowed BPSG layer. A chemical mechanical polishing procedure is next employed to remove the planar, reflowed BPSG layer, and portions of the underlying HDP silicon oxide, from the top surface of a silicon nitride stop layer, resulting in a planar top surface topography for all silicon oxide filled, insulator regions.
摘要:
The present invention involves the isolation and characterization of the first discovered phytochrome-regulated transcriptional factor, a protein designated CCA1 which binds to the promoter region of the chlorophyll binding protein gene (Lhcb1*3) of Arabidopsis. The Lhcb1*3 gene of Arabidopsis is known to be regulated by phytochrome in etiolated seedlings where a brief illumination by red light results in a large increase in the level of mRNA from this gene. A DNA binding activity, designated CA-1, that interacts with the promoter region of Lhcb1*3 was previously discovered in cellular extracts. This binding activity was used to obtain a cDNA clone for a transcription factor that binds specifically to the Lhcb1*3 promoter. Modification of the expression of CCA1 using techniques of genetic engineering results in unexpected changes in the timing of plant flowering. When CCA1 is overexpressed, it appears that the normal circadian rhythms of the plant are disrupted. The plants take a significantly longer time to reach flowering even in the presence of day length conditions that normally induce flowering. Thus, a method of extending vegetative growth and delaying flowering is provided.
摘要:
The present invention identifies a novel family of kinases regulated by brassinosteroids, referred to as BRKs (brassinosteroid regulated kinases) or BSKs (brassinosteroid signaling kinases). The present invention provides methods for modulating the response of a plant cell to a brassinosteroid using BRKs.
摘要:
The present invention identifies a novel family of kinases regulated by brassinosteroids, referred to as BRKs (brassinosteroid regulated kinases) or BSKs (brassinosteroid signaling kinases). The present invention provides methods for modulating the response of a plant cell to a brassinosteroid using BRKs.