Abstract:
Optical devices comprising at least one optical layer and at least one antistatic layer disposed on at least one surface of the optical layer wherein the antistatic layer comprises the reaction product of: (a) at least one polymerizable onium salt; and (b) at least one polymerizable, non-onium, silicone or perfluoropolyether moiety-containing monomer, oligomer, or polymer.
Abstract:
An optical device having a first optical member, a second optical member, and an antistatic layer disposed between the first optical member and the second optical member wherein the antistatic layer contains the reaction product of a mixture comprising at least one polymerizable onium salt having an anion and at least one non-onium polymerizable monomer, oligomer, or polymer.
Abstract:
An optical device having a first optical member, a second optical member, and an antistatic layer disposed between the first optical member and the second optical member wherein the antistatic layer contains the reaction product of a mixture comprising at least one polymerizable onium salt having an anion and at least one non-onium polymerizable monomer, oligomer, or polymer.
Abstract:
A microstructured diffuser is described comprising a light transmissive film comprising a first microstructured surface comprising a plurality of peaks and valleys. A coating is disposed on the first microstructured surface. The coating partially fills the valleys forming a second microstructured surface.
Abstract:
A microstructured diffuser is described comprising a light transmissive film comprising a first microstructured surface comprising a plurality of peaks and valleys. A coating is disposed on the first microstructured surface. The coating partially fills the valleys forming a second microstructured surface.
Abstract:
Presently described are optical stacks comprising a first optical film comprising a plurality of structures comprising an optically active portion designed primarily to provide optical gain and optionally an optically in-active bonding portion disposed on a first surface bonded to a second optical film with a light-transmissive adhesive layer such that a portion of the structures penetrate the adhesive layer and a separation is provided between the adhesive layer and the first surface. In one embodiment, the optical stacks exhibit a combination of high peel strength and high retained brightness, particularly after aging. The adhesive layer preferably comprises an interpenetrating network of the reaction product of a polyacrylate component and a polymerizable monomer and the adhesive layer has an elastic modulus ranging from 100 to 2000 MPa at 25° C.
Abstract:
Optical devices comprising at least one optical layer and at least one antistatic layer disposed on at least one surface of the optical layer wherein the antistatic layer comprises the reaction product of: (a) at least one polymerizable onium salt; and (b) at least one polymerizable, non-onium, silicone or perfluoropolyether moiety-containing monomer, oligomer, or polymer.
Abstract:
Presently described are optical stacks comprising a first optical film comprising a plurality of structures comprising an optically active portion designed primarily to provide optical gain and optionally an optically in-active bonding portion disposed on a first surface bonded to a second optical film with a light-transmissive adhesive layer such that a portion of the structures penetrate the adhesive layer and a separation is provided between the adhesive layer and the first surface. In one embodiment, the optical stacks exhibit a combination of high peel strength and high retained brightness, particularly after aging. The adhesive layer preferably comprises an interpenetrating network of the reaction product of a polyacrylate component and a polymerizable monomer and the adhesive layer has an elastic modulus ranging from 100 to 2000 MPa at 25° C.