Abstract:
A blood pump assembly can include various components such as a housing and a sensor configured to detect one or more characteristics of the blood. In some embodiments, the sensor can be coupled to the housing and can include a sensor membrane configured to deflect in response to a change in a blood parameter (e.g., pressure). The blood pump assembly can include a shield that covers at least a portion of the sensor membrane so as to protect the sensor from damage when the blood pump assembly is inserted through an introducer and navigated through the patient's vasculature and/or when the blood pump assembly is inserted into the heart in a surgical procedure. One or more protective layers can be deposited over the sensor membrane to prevent the sensor membrane from being dissolved through interactions with the patient's blood.
Abstract:
The present disclosure provides medical devices, systems and methods and in particular to devices and methods useful for anchoring graft materials to bodily structures.
Abstract:
A method of operating a counterpulsation device (CPD) in a human or animal subject is disclosed, the method including: receiving a heart beat signal indicative of the heart beat of the subject; providing counterpulsation therapy by controlling the pressure supplied to a CPD drive line in pneumatic communication with the CPD to cause the CPD to alternately fill with blood and eject blood with a timing that is determined at least in part based on the heart beat signal; while providing counterpulsation therapy, receiving a CPD drive line pressure signal indicative of the pressure in the CPD drive line; and adjusting the pressure supplied to the drive line based at least in part on the drive line pressure signal.
Abstract:
A blood pump assembly can include various components such as a housing and a sensor configured to detect one or more characteristics of the blood. In some embodiments, the sensor can be coupled to the housing and can include a sensor membrane configured to deflect in response to a change in a blood parameter (e.g., pressure). The blood pump assembly can include a shield that covers at least a portion of the sensor membrane so as to protect the sensor from damage when the blood pump assembly is inserted through an introducer and navigated through the patient's vasculature and/or when the blood pump assembly is inserted into the heart in a surgical procedure. One or more protective layers can be deposited over the sensor membrane to prevent the sensor membrane from being dissolved through interactions with the patient's blood.
Abstract:
A blood flow conduit includes a first conduit portion defining a first portion of a lumen; and a second conduit portion defining a second portion of a lumen. At least one of the first or second conduit portions may include a tip portion and the other of the first or second conduit portions may include an enlarged area.
Abstract:
A method of operating a counterpulsation device (CPD) in a human or animal subject is disclosed, the method including: receiving a heart beat signal indicative of the heart beat of the subject; providing counterpulsation therapy by controlling the pressure supplied to a CPD drive line in pneumatic communication with the CPD to cause the CPD to alternately fill with blood and eject blood with a timing that is determined at least in part based on the heart beat signal; while providing counterpulsation therapy, receiving a CPD drive line pressure signal indicative of the pressure in the CPD drive line; and adjusting the pressure supplied to the drive line based at least in part on the drive line pressure signal.
Abstract:
An apparatus is disclosed for attaching a counter pulsation device (CPD) to a blood vessel in a human or animal subject, the apparatus including: an interposition graft having a first end configured to be attached to the blood vessel, a second end, and an interior passage providing fluid connection between the first end and the second end; and a pump graft having first end attached to the second end of the interposition graft, a second end configured to be attached to the CPD, and an interior passage providing fluid connection between the first end and the second end In some embodiments, the interior passage of the interposition graft includes a rough surface configured to promote biological growth on the surface, and the interior passage of the pump graft includes a smooth surface configured to inhibit biological growth on the surface.
Abstract:
An intravascular blood pump has an intake filter that reduces risk of heart tissue being sucked into an intake port of the pump. The filter defines a plurality of apertures, through which blood flows through the filter. The apertures are sized to prevent ingestion, by the input port, of the heart tissue. The filter includes a plurality of generally helical first struts wound about a longitudinal axis of the filter, and a plurality of second struts. The first and second struts collectively define the plurality of apertures therebetween. The struts may be woven filaments, or the apertures may be defined in a thin film (foil) tube, where remaining material between the apertures form the struts.
Abstract:
The present disclosure provides medical devices, systems and methods and in particular to devices and methods useful for anchoring graft materials to bodily structures.
Abstract:
A blood flow conduit includes a first conduit portion defining a first portion of a lumen; and a second conduit portion defining a second portion of a lumen. At least one of the first or second conduit portions may include a tip portion and the other of the first or second conduit portions may include an enlarged area.