Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed at image synthesis utilizing an active mask. In one embodiment, input is received that identifies a target region within an image that is to be synthesized. A patch synthesis technique can then be performed to synthesize the target region based on portions of a source region that are identified by the patch synthesis technique. In embodiments, the patch synthesis technique includes, for at least one iteration, generating an active mask that indicates one or more portions of the target region as inactive. This active mask can be utilized by at least one process of the patch synthesis technique to ignore the one or more portions indicated as inactive by the active mask for the at least one iteration of the patch synthesis technique. Other embodiments may be described and/or claimed.
Abstract:
Techniques for removing artifacts, such as shadows, from document images are described. A shadow map is generated for a digital image by first determining local background colors using clusters of local pixel intensities. Then, a global reference background color is selected from all pixel intensities of the digital image. Next, a per-pixel scaling factor is determined that maps the local background colors to the global reference background color, which applies localized adjustment to the digital image to remove local shadow.
Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed at image synthesis utilizing an active mask. In one embodiment, input is received that identifies a target region within an image that is to be synthesized. A patch synthesis technique can then be performed to synthesize the target region based on portions of a source region that are identified by the patch synthesis technique. In embodiments, the patch synthesis technique includes, for at least one iteration, generating an active mask that indicates one or more portions of the target region as inactive. This active mask can be utilized by at least one process of the patch synthesis technique to ignore the one or more portions indicated as inactive by the active mask for the at least one iteration of the patch synthesis technique. Other embodiments may be described and/or claimed.
Abstract:
Variable patch shape synthesis techniques are described. In one or more implementations, a plurality of patches are computed from one or more images, at least one of the plurality of patches having a different shape than another one of the plurality of patches. The shapes define an area to be considered for use in a patch synthesis technique. The patch synthesis technique is performed to edit an image using the computed plurality of patches having the different shapes.
Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed at image synthesis utilizing sampling of patch correspondence information between iterations at different scales. A patch synthesis technique can be performed to synthesize a target region at a first image scale based on portions of a source region that are identified by the patch synthesis technique. The image can then be sampled to generate an image at a second image scale. The sampling can include generating patch correspondence information for the image at the second image scale. Invalid patch assignments in the patch correspondence information at the second image scale can then be identified, and valid patches can be assigned to the pixels having invalid patch assignments. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed at image synthesis utilizing sampling of patch correspondence information between iterations at different scales. A patch synthesis technique can be performed to synthesize a target region at a first image scale based on portions of a source region that are identified by the patch synthesis technique. The image can then be sampled to generate an image at a second image scale. The sampling can include generating patch correspondence information for the image at the second image scale. Invalid patch assignments in the patch correspondence information at the second image scale can then be identified, and valid patches can be assigned to the pixels having invalid patch assignments. Other embodiments may be described and/or claimed.
Abstract:
Embodiments described herein are directed to methods and systems for facilitating control of smoothness of transitions between images. In embodiments, a difference of color values of pixels between a foreground image and the background image are identified along a boundary associated with a location at which to paste the foreground image relative to the background image. Thereafter, recursive down sampling of a region of pixels within the boundary by a sampling factor is performed to produce a plurality of down sampled images having color difference indicators associated with each pixel of the down sampled images. Such color difference indicators indicate whether a difference of color value exists for the corresponding pixel. To effectuate a seamless transition, the color difference indicators are normalized in association with each recursively down sampled image.
Abstract:
Methods, apparatus, and computer-readable storage media for patch-based image synthesis using color and color gradient voting. A patch matching technique provides an extended patch search space that encompasses geometric and photometric transformations, as well as color and color gradient domain features. The photometric transformations may include gain and bias. The patch-based image synthesis techniques may also integrate image color and color gradients into the patch representation and replace conventional color averaging with a technique that performs voting for colors and color gradients and then solves a screened Poisson equation based on values for colors and color gradients when blending patch(es) with a target image.
Abstract:
A region of an image on which a content aware fill operation is to be performed is identified by a device, the content aware fill operation replacing pixel values in the region based on pixel values from one or more other regions. The device generates a reduced-size version of the image by down sampling the image, and sends the reduced-size version of the image to a remote service. The remote service generates a mapping indicating which pixels in the reduced-size version of the image are to be used as the values of which other pixels in the region of the reduced-size version of the image. The mapping is compressed and returned to the device. The device decompresses the mapping and up samples the mapping. An output image is generated based on the originally obtained image, the up sampled mapping, and an indication of the region.
Abstract:
Techniques for removing artifacts, such as shadows, from document images are described. A shadow map is generated for a digital image by first determining local background colors using clusters of local pixel intensities. Then, a global reference background color is selected from all pixel intensities of the digital image. Next, a per-pixel scaling factor is determined that maps the local background colors to the global reference background color, which applies localized adjustment to the digital image to remove local shadow.