Abstract:
In various embodiments, an optical alignment structure may be provided. The optical alignment structure may include a light carrying structure configured to receive an input optical light from an external light source. The optical alignment structure may further include a light redirection mechanism coupled to the light carrying structure. The light redirection mechanism may be configured to receive the input optical light from the light carrying structure. The light redirection mechanism may be further configured to redirect the input optical light back to the light carrying structure, the redirected input optical light configured to be detected by a detector for alignment of the optical alignment structure with the external optical source.
Abstract:
In various embodiments, an optical alignment structure may be provided. The optical alignment structure may include a light carrying structure configured to receive an input optical light from an external light source. The optical alignment structure may further include a light redirection mechanism coupled to the light carrying structure. The light redirection mechanism may be configured to receive the input optical light from the light carrying structure. The light redirection mechanism may be further configured to redirect the input optical light back to the light carrying structure, the redirected input optical light configured to be detected by a detector for alignment of the optical alignment structure with the external optical source.
Abstract:
According to embodiments of the present invention, an optical coupling device is provided. The optical coupling device includes a substrate, and a grating arrangement including a plurality of grating elements, the plurality of grating elements being defined on one surface of the substrate, wherein the plurality of grating elements are arranged to have a first period along a first direction, and a second period along a second direction orthogonal to the first direction, the first period being different from the second period. According to further embodiments of the present invention, a photonic integrated circuit and a method of forming an optical coupling device are also provided.
Abstract:
According to embodiments of the present invention, an optical coupling device is provided. The optical coupling device includes a substrate, and a grating arrangement including a plurality of grating elements, the plurality of grating elements being defined on one surface of the substrate, wherein the plurality of grating elements are arranged to have a first period along a first direction, and a second period along a second direction orthogonal to the first direction, the first period being different from the second period. According to further embodiments of the present invention, a photonic integrated circuit and a method of forming an optical coupling device are also provided.
Abstract:
According to embodiments of the present invention, an optical coupling device is provided. The optical coupling device includes a substrate, and a grating arrangement including a plurality of grating elements, the plurality of grating elements being defined on one surface of the substrate, wherein the plurality of grating elements are arranged to have a first period along a first direction, and a second period along a second direction orthogonal to the first direction, the first period being different from the second period. According to further embodiments of the present invention, a photonic integrated circuit and a method of forming an optical coupling device are also provided.