Abstract:
An optical light source is provided. The optical light source includes a waveguide including two reflectors arranged spaced apart from each other to define an optical cavity therebetween, an optical gain medium, and a coupling structure arranged to couple light between the optical cavity and the optical gain medium.
Abstract:
According to embodiments of the present invention, an optical device is provided. The optical device includes a waveguide structure including a floating gate, and an optical waveguide arranged spaced apart from the floating gate, wherein the optical waveguide overlaps with the floating gate, a carrier injection portion arranged spaced apart from the floating gate, and an electrode arrangement, wherein, in response to a first voltage difference applied to the electrode arrangement, the optical device is configured to inject charge carriers from the carrier injection portion to the floating gate to cause a change in refractive index of the waveguide structure, and wherein, in response to a second voltage difference applied to the electrode arrangement, the optical device is configured to drive the charge carriers from the floating gate to the optical waveguide to deplete the charge carriers.
Abstract:
According to embodiments of the present invention, a pixel arrangement is provided. The pixel arrangement includes a plurality of pixels arranged adjacent to each other; and a substrate configured to receive the plurality of pixels, wherein each pixel of the plurality of pixels comprises a plurality of optical cells electrically coupled to each other; and an electrical interconnection electrically isolated from the plurality of optical cells, the electrical interconnection arranged to provide electrical communication between two separate conducting terminals external to the pixel.
Abstract:
According to embodiments of the present invention, an optical device is provided. The optical device includes a waveguide structure including a floating gate, and an optical waveguide arranged spaced apart from the floating gate, wherein the optical waveguide overlaps with the floating gate, a carrier injection portion arranged spaced apart from the floating gate, and an electrode arrangement, wherein, in response to a first voltage difference applied to the electrode arrangement, the optical device is configured to inject charge carriers from the carrier injection portion to the floating gate to cause a change in refractive index of the waveguide structure, and wherein, in response to a second voltage difference applied to the electrode arrangement, the optical device is configured to drive the charge carriers from the floating gate to the optical waveguide to deplete the charge carriers.
Abstract:
According to embodiments of the present invention, a semiconductor resistor structure is provided. The semiconductor resistor structure includes a substrate, a first region of a first conductivity type in the substrate, a second region of the first conductivity type in the substrate, the first region and the second region arranged one over the other, and an intermediate region of a second conductivity type in between the first region and the second region, wherein at least one gap is defined through the intermediate region and overlapping with the first region and the second region. According to further embodiments of the present invention, a semiconductor photomultiplier device is also provided.
Abstract:
According to one aspect of the invention, there is provided a pin photodetector comprising a dopant diffusion barrier layer disposed within an active light absorbing region of the pin photodetector.
Abstract:
According to embodiments of the present invention, an optical coupling device is provided. The optical coupling device includes a substrate, and a grating arrangement including a plurality of grating elements, the plurality of grating elements being defined on one surface of the substrate, wherein the plurality of grating elements are arranged to have a first period along a first direction, and a second period along a second direction orthogonal to the first direction, the first period being different from the second period. According to further embodiments of the present invention, a photonic integrated circuit and a method of forming an optical coupling device are also provided.
Abstract:
According to embodiments of the present invention, an optical coupling device is provided. The optical coupling device includes a substrate, and a grating arrangement including a plurality of grating elements, the plurality of grating elements being defined on one surface of the substrate, wherein the plurality of grating elements are arranged to have a first period along a first direction, and a second period along a second direction orthogonal to the first direction, the first period being different from the second period. According to further embodiments of the present invention, a photonic integrated circuit and a method of forming an optical coupling device are also provided.
Abstract:
According to embodiments of the present invention, an optical coupling device is provided. The optical coupling device includes a substrate, and a grating arrangement including a plurality of grating elements, the plurality of grating elements being defined on one surface of the substrate, wherein the plurality of grating elements are arranged to have a first period along a first direction, and a second period along a second direction orthogonal to the first direction, the first period being different from the second period. According to further embodiments of the present invention, a photonic integrated circuit and a method of forming an optical coupling device are also provided.
Abstract:
According to embodiments of the present invention, a method for forming an optical modulator is provided. The method includes providing a substrate, implanting dopants of a first conductivity type into the substrate to form a first doped region, implanting dopants of a second conductivity type into the substrate to form a second doped region, wherein a portion of the second doped region is formed over and overlaps with a portion of the first doped region to form a junction between the respective portions of the first doped region and the second doped region, and wherein a remaining portion of the second doped region is located outside of the junction, and forming a ridge waveguide, wherein the ridge waveguide overlaps with at least a part of the junction.