Abstract:
Provided are an injectable tissue adhesive hydrogel including gamma-cyclodextrin (γ-CD). When such an injectable tissue adhesive hydrogel including the γ-CD is used as a skin glue, based on a fact that the γ-CD has a bigger hydrophobic cavity than that of α- and β-CDs, the injectable tissue adhesive hydrogel including the γ-CD has stronger interactions than host-guest interactions. In addition, hydrogen bonding in the injectable tissue adhesive hydrogel including the γ-CD can improve both cohesiveness and adhesiveness of gelatin. The injectable tissue adhesive hydrogel including the γ-CD having excellent cell viability is used for adhesion of a skin incision, to thereby effectively promote tissue regeneration.
Abstract:
The present invention relates to an injectable hydrogel rod using a crosslinked hydrogel, a method for manufacturing same, and biomedical use thereof. According to the present invention, by adjusting the contents of a polymer, an enzyme and hydrogen peroxide to a certain ratio to manufacture an injectable hydrogel rod, the initial release amount of a drug injected into the hydrogel rod is controlled, and thus, compared to existing hydrogel-based injectable implants, the hydrogel rod exhibits sustained release above an effective concentration for a long period of time and greatly reduces elimination into surrounding tissues, which may result in an increased therapeutic effect and remarkably reduced side effects.
Abstract:
The present disclosure relates to a method for immobilizing heparin and a NO-generating catalyst and a cardiovascular device having a surface modified using the same, and more particularly, to a method of co-immobilizing a heparin-phenol derivative and copper nanoparticles as a NO-generating catalyst on the surface of a material by a polyphenol oxidase-mediated reaction, a material having a surface with heparin and a NO-generating catalyst co-immobilized thereon by using the method, and a cardiovascular device including the material. It has been confirmed that a surface having heparin and the NO-generating catalyst co-immobilized thereon by the method of the present disclosure has high in vivo stability, continuously generates NO, and also promotes the proliferation of endothelial cells while significantly inhibiting the adhesion and activation of platelets and smooth muscle cells. Thus, the method may be advantageously applied to cardiovascular devices for inhibiting thrombosis and restenosis.
Abstract:
Provided is a catheter to be inserted into an object. The catheter includes a main body having a tubular shape and an expansion layer formed on an outer circumferential surface of the main body, and the expansion layer contains an expandable material which is expanded by contact with a liquid.
Abstract:
Disclosed is a multi-layered structure for drug reservoir, comprising a first micelle layer for crosslinking and adhesion, comprising a drug, a multi-arm polymer, a phenol derivative, and a dopa derivative and having a one or two-layered structure; a second micelle layer for crosslinking, being stacked on the first micelle layer, comprising a drug, a multi-arm polymer, and a phenol derivative, and having a one or two-layered structure; and a physiologically active material layer, being stacked on the second micelle layer, comprising a physiologically active material, a water-soluble polymer, and a phenol derivative, and having a one or two-layered structure.