Abstract:
The present invention relates to a cascaded multi-wavelength Raman fiber amplification stage with a length of optical fiber having input (15) and output (16) sections, pump laser means (11) for introducing pump radiation of wavelength nullp into said length of optical fiber (13), at least two pairs of reflector means (151,161; . . . ;159, 169), spaced-apart the length of optical fiber (13), at least one of said pairs of reflector means has an output reflector mean (161, 162, 163), with a reflectivity lower than 100% and a feed back loop with: a tap coupler (20) for deriving a low percentage of the optical output signal as a optical monitor signal (28), at least one wavelength selecting element (21, 25,26, 27) for the optical monitor signal (28), at least one opto-electrical converter (23, 231,232,233) generating a electrical signal and a control circuit (27) for the electrical signal connected to adjustment means (181, 182, 183) adjusting the reflectivity of the output reflector means (161, 162, 163).
Abstract:
The present invention relates to a cascaded multi-wavelength Raman fiber laser adapted for emitting radiation of at least one wavelength nulls1, with a length of optical fiber (13) having input (15) and output (16) sections, means (11) for introducing pump radiation of wavelength nullp into said length of optical fiber (13), at least one pair of spaced-apart reflector means (151,161; . . . ;159, 169), defining an optical cavity belonging to said optical fiber, each of said reflector means having a center wavelength, the reflector means of each pair being located respectively at said input section (15) and said output section (16) of said optical fiber and at least one of said pairs of reflector means having its reflector means located at said output section (16), called output reflector means (161, 162, 163), having a lower reflectivity at said center wavelength than the corresponding reflector means of the same pair (151, 152, 153) located at said input section (15), so as to emit radiation of said output wavelengths out of said optical fiber (13).
Abstract:
The invention is related to a waveguide amplifier with an input for optical signals and an output for optical signals with at least one piece of amplifying waveguide with at least one mean for coupling pump laser modules to the amplifying waveguide which contains Tm ions. The invention is also related to a pumping scheme for waveguide amplifier feeding two different wavelengths in to the waveguide.
Abstract:
An optical signal amplifier comprises a Semiconductor Optical Amplifier SOA used as semiconductor Amplified Spontaneous Emission ASE source. This SOA produces optical pumping seed which has to be amplified to get a large pump power. With such large pump power, it will be possible to counteract the loss in a fiber link of optical signals transmitted through it by applying said amplified pumping seed as Raman amplification on the optical signals. The invention further relates to a method for amplifying an optical signal comprising the combination of a semiconductor ASE source together with a high-power pump source. Latter will be used to amplify optical pumping seed to be produced by the semi-conductor ASE source. Accordingly, the obtained amplified pumping seed will be used to act as a Raman amplification of optical signals.
Abstract:
An optical fiber with a large effective surface area has holes at points in at least two layers concentric with the fiber of points of a regular matrix. The holes in one layer have the same dimensions and occupy all the available points in the layer. In at least two layers the holes have different dimensions.
Abstract:
A spatial light modulator (SLM) is made up of a cell filled with a liquid crystal (LC) based substance. Latter has a variable scattering property with respect to an electric field present in the cell. By using a plurality of electrodes in the direct vicinity of said cell, it is then possible to build an electric field inside it which will permit advantageously to modulate a continuous spectrum from optical signals transmitted through said cell. The different pass bands present in said continuous spectrum while at least few of them comprise at least a respective different wavelength will have to be transmitted through said cell at different regions. Latter will correspond to different values of the amplitude of scattering such to be adapted to modulate the respective different pass bands. Such SLM is used to build a dynamic spectral equalizer. Latter contains a spectral dispersive element placed on an optical path of an incident light beam. This spectral dispersive element will spread continuously said incident light beam onto said SLM such that at least each different wavelength present in said incident light beam are focused or imaged towards a different spatial region of said SLM.
Abstract:
Disclosed is a Raman amplifier (10) comprising at least one length of fiber (12) and at least a coupler (14) for coupling at least a first pump laser module (16) and a second pump laser module (18) to said Raman amplifying fiber (12), the first pump laser module (16) comprising a frequency discriminator (24) for selecting an optical frequency to be emitted with an optical power exceeding an optical power of remaining optical frequencies that are also emitted by said first pump laser module (16). The first optical frequency is selected to be spaced apart from a local maximum (28; 36; 48) in optical power of said remaining optical frequencies, and the second pump laser module (18) emits at an optical frequency one Stokes-frequency above the frequency of said local maximum (28; 36; 48). The firts optical frequency and the frequency of said local maximum are chosen on Stokes-frquency above the signal frequency range. As a consequence, the Raman gain provided in Raman amplifying fiber 12 is broadened.
Abstract:
An optical fiber amplifier is considered comprising a mono-mode core, a first cladding around said core and at least a further cladding around said first cladding while said first cladding includes a ring shaped active region doped with rare earth material surrounding said mono-mode core. Advantageously, the first cladding is designed with a radial refractive index following an almost continuous decreasing function for increasing radius. The use of a continuously decreasing refractive index for the cladding at the outer border of the ring shaped active medium optimize the efficiency of the coupling between the core and the cladding.
Abstract:
The invention relates to an optical fiber amplifier device with an optical signal input and output with first piece of amplifying fiber doped with lanthanide in a double-clad structure, a second piece of amplifying fiber doped with lanthanide in a ring structure and lasers for pumping the two fiber pieces with at least one pump module.
Abstract:
The present invention provides a WDM optical communication system, comprising input means and output means for an optical signal, an optical fibre path connecting signal-transmissively said input and output means, wherein the optical signal is amplified by means of Raman amplification and said optical fibre path comprises at least one Raman amplifier, further comprising WDM means for coupling at least two polarized pump radiation wavelengths with wavelengths less than the signal radiation wavelength into said Raman amplifier, wherein one pump radiation wavelength has a selected different polarization with respect to the polarization of the other pump radiation wavelengths.