Abstract:
The present invention propose an optical filter for filtering out at least a part of one of two spectral side-bands of a coded optical signal spectrum having a carrier wavelength, the first of said side-bands which is to be transmitted by said filter being called transmitted side-band the second of said side-bands which is to be filtered out by said filter being called vestigial side-band, said optical filter having a transmission response in intensity, having a maximum value at a central filter wavelength distinct from said carrier wavelength and located in said transmitted side-band, and said response being divided into two parts, a first filter part associated to a wavelength region including said carrier wavelength, a second filter part associated to a wavelength region which does not include said carrier wavelength where at a given value of transmittance distinct from said maximum value, said second filter part has a filter width smaller than the filter width of said first filter part.
Abstract:
The invention shows a frequency allocation scheme for optical channels transmitted via a WDM transmission line with alternating left side and right side filtering for adjacent channels, with alternating channel spacing of A and B, where A
Abstract:
The invention shows a transmission system with a transmitter function, a transmitting fiber and a receiver function where the transmitter function comprising lightsources (1), modulators (2) and a multiplexer (3), and the receiver comprising at least a demultiplexer (5), filters and electrical receivers where the channels for left side filtering are modulated with modulators with a negative chirp and for right side filtering with modulators with positive chirp.
Abstract:
The present invention relates to an optical communication network and to a network element for use in such a network. The network element comprises a plurality of receivers (70-76) for receiving optical communication signals, a plurality of transmitters (54-62, 82-86) for transmitting optical communication signals, and a plurality of network connections, each network connection having an individual signal impairment characteristic. The pluralities of receivers (70-76) and transmitters (54-62, 82-86) are adapted to employ a plurality of different modulation schemes (64, 66). Furthermore, the pluralities of receivers (70-76) and transmitters (54-62, 82-86) are assigned to the network connections as a function of the individual signal impairment characteristics.
Abstract:
The invention relates to an interleaver circuit (10, 10null) for interleaving optical signals, comprising a first and a second input port (12, 14), an output port (16), a first optical filter (18; 18null) that has a first filter function with periodic passbands (32, 34, 36) and is connected to the first input port (12), a second optical filter (20; 20null) that has a second filter function with periodic passbands (38, 40) and is connected to the second input port (14), and an optical interleaver (22). The latter comprises a multiplexing port (23) connected to the output port (16) and two de-multiplexing ports (24, 26) connected to the first input port (12) via the first optical filter (18; 18null) and the second optical filter (20; 20null), respectively. At least one optical filter (18, 20; 18null, 20null) is tunable such that the passband frequencies are collectively shiftable without altering the periodicity of the filter function.