Abstract:
Described herein are intraoral appliances with adaptive cellular materials and structures to provide enhanced mechanical properties and orthodontic functionality, and related methods. The described appliances may have higher Young's modulus and elongation rate than appliances made from conventional materials. Further, the described appliances may have desirable non-linear force/strain profiles. Additionally, the control provided by using cellular structures allow for increased customization for individual patients. Thus, the described appliances may be more effective, have longer appliance lifetimes and/or provide less discomfort to patients.
Abstract:
Systems, methods, and devices for improved orthodontic treatment of a patient's teeth are provided herein. In some embodiments, a method includes determining an appliance geometry for a dental appliance. The appliance geometry can include a first region representing a shell comprising a plurality of teeth receiving cavities, and a second region representing at least one integrally formed component to be integrally joined to the shell. The method can also include generating instructions including a first digital representation of the shell based on the first region, and a second digital representation of the at least one integrally formed component based on the second region. The method can further include transmitting the instructions to a fabrication system configured to additively manufacture the dental appliance by fabricating the shell based on the first digital representation, concurrently with fabricating the at least one integrally formed component based on the second digital representation.
Abstract:
Systems, methods, and devices for improved orthodontic treatment of a patient's teeth are provided herein. A method may include determining a movement path to move one or more teeth from an initial arrangement to a target arrangement, determining an appliance geometry for an orthodontic appliance comprising a shell and one or more integrally formed components, wherein the shell comprises a plurality of teeth receiving cavities shaped to move the one or more teeth from the initial arrangement to the target arrangement, and generating instructions for direct fabrication of the orthodontic appliance, wherein the instructions are configured to cause direct fabrication of the shell using a first material and direct fabrication of the one or more integrally formed components using a second, different material.
Abstract:
Systems, methods, and devices for producing appliances for expansion of the palate of a patient are provided. A palate expanding orthodontic appliance comprises a teeth engagement portion comprising a plurality of teeth engagement structures and a force generating portion coupled to the teeth engagement portion and configured to apply force to cause the patient's palate to expand. The orthodontic appliances can be designed according to the specifications provided herein and manufactured using direct fabrication methods.
Abstract:
Orthodontic systems and related methods are disclosed for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement. Methods and orthodontic systems of the invention include tooth attachments having improved or optimized parameters selected or modified for more optimal and/or effective application of forces for a desired/selected orthodontic movement. Attachments of the present invention can be customized to a particular patient (e.g., patient-customized), a particular movement, and/or a sub-group or sub-set of patients, and configured to engage an orthodontic tooth positioning appliance worn by a patient, where engagement between the attachment and orthodontic appliance results in application of a repositioning force or series/system of forces to the tooth having the attachment and will generally elicit a tooth movement.
Abstract:
The present invention provides methods and systems including orthodontic tooth positioning appliances. An exemplary appliance can include teeth receiving cavities shaped such that, when worn by a patient, repositioning the patient's teeth from a first arrangement toward a subsequent or target arrangement. Appliances can include a cavity having one or more shaped features or protrusions shaped and/or positioned so as to apply a desired force to a patient's tooth received in the cavity and move the tooth along a desired path or direction.
Abstract:
The present invention provides methods and systems including orthodontic tooth positioning appliances. An exemplary appliance can include teeth receiving cavities shaped such that, when worn by a patient, repositioning the patient's teeth from a first arrangement toward a subsequent or target arrangement. Appliances can include a cavity having one or more shaped features or protrusions shaped and/or positioned so as to apply a desired force to a patient's tooth received in the cavity and move the tooth along a desired path or direction.
Abstract:
Methods for designing and fabrication of a series of apparatuses for expanding a patient's palate (“palatal expanders”). In particular, described herein are methods and apparatuses for forming palatal expanders, including rapid palatal expanders, as well as series of palatal expanders formed as described herein and apparatuses for designing and fabricating them.
Abstract:
Palatal expander apparatuses for expanding a patient's palate (“palatal expanders”) and methods of using and making them. These palatal expanders may be configured to have a variable surface smoothness on one side (e.g., the lingual-facing surface) compared to the opposite side (e.g., the palatal-facing surface). These palatal expanders may be configured to have a varying thickness in the palatal region. These palatal expanders may be adapted for ease in removal by the patient or caregiver (e.g., including a hinged region and/or detachment region, and/or including a thinner buccal side then occlusal side, etc.).