Abstract:
Provided herein are photopolymerizable monomers, optionally for use as reactive diluents in a high temperature lithography-based photopolymerization process, a method of producing polymers using said photopolymerizable monomers, the polymers thus produced, and orthodontic appliances comprising the polymers.
Abstract:
Systems, methods, and devices for post-processing additively manufactured objects are disclosed herein. In some embodiments, a method includes receiving a plurality of additively manufactured objects on a rotor, the plurality of additively manufactured objects having excess material thereon. The method can include removing the excess material from the plurality of additively manufactured objects by rotating the plurality of additively manufactured objects via the rotor. The method can further include applying energy to the plurality of additively manufactured objects to cure a portion of each additively manufactured object while the plurality of additively manufactured objects are on the rotor.
Abstract:
Systems, methods, and devices for improved orthodontic treatment of a patient's teeth are provided herein. In some embodiments, a method includes determining an appliance geometry for a dental appliance. The appliance geometry can include a first region representing a shell comprising a plurality of teeth receiving cavities, and a second region representing at least one integrally formed component to be integrally joined to the shell. The method can also include generating instructions including a first digital representation of the shell based on the first region, and a second digital representation of the at least one integrally formed component based on the second region. The method can further include transmitting the instructions to a fabrication system configured to additively manufacture the dental appliance by fabricating the shell based on the first digital representation, concurrently with fabricating the at least one integrally formed component based on the second digital representation.
Abstract:
Systems, methods, and devices for improved orthodontic treatment of a patient's teeth are provided herein. A method may include determining a movement path to move one or more teeth from an initial arrangement to a target arrangement, determining an appliance geometry for an orthodontic appliance comprising a shell and one or more integrally formed components, wherein the shell comprises a plurality of teeth receiving cavities shaped to move the one or more teeth from the initial arrangement to the target arrangement, and generating instructions for direct fabrication of the orthodontic appliance, wherein the instructions are configured to cause direct fabrication of the shell using a first material and direct fabrication of the one or more integrally formed components using a second, different material.
Abstract:
Provided herein are curable compositions for use in a high temperature lithography-based photopolymerization process, a method of producing crosslinked polymers using said curable compositions, crosslinked polymers thus produced, and orthodontic appliances comprising the crosslinked polymers.
Abstract:
A dental model and related systems and methods, including a first component representing a portion of a patient's jaw and a second component that is demountably attachable to the first component, and a second component representing a dental structure of interest, such as the remaining portion of a tooth or a dental implant.
Abstract:
Systems, methods, and devices for producing appliances for expansion of the palate of a patient are provided. A palate expanding orthodontic appliance comprises a teeth engagement portion comprising a plurality of teeth engagement structures and a force generating portion coupled to the teeth engagement portion and configured to apply force to cause the patient's palate to expand. The orthodontic appliances can be designed according to the specifications provided herein and manufactured using direct fabrication methods.
Abstract:
Detection of placement of dental aligners in patient mouth on teeth for indication of wearing compliance. Described herein are apparatuses and methods for detecting wearing, including compliance. In some variations these apparatuses and methods may include a sensor configured to detect deflection of the one or more deflectable structures. In some variations, these apparatuses and methods may include a proximity sensor coupled to the appliance shell and configured to generate sensor data when in proximity with intraoral tissue.
Abstract:
Provided herein are crosslinked polymers useful in orthodontic appliances and light polymerizable liquid compositions and formulations useful for making crosslinked polymers. Also provided are methods of making an orthodontic appliance comprising a cross-linked polymer formed by a direct fabrication technique.