Abstract:
A power electronic converter for use in high voltage direct current power transmission and reactive power compensation comprises a plurality of switching elements interconnecting in use a DC network and one or more AC networks, the plurality of switching elements being controllable in use to facilitate power conversion between the AC and DC networks, wherein in use, the plurality of switching elements are controllable to form one or more short circuits within the power electronic converter so as to define one or more primary current flow paths, the or each primary current flow path including a respective one of the AC networks and the power electronic converter and bypassing the DC network.
Abstract:
A power electronic converter for use in high voltage direct current power transmission and reactive power compensation comprises a plurality of switching elements interconnecting in use a DC network and one or more AC networks, the plurality of switching elements being controllable in use to facilitate power conversion between the AC and DC networks, wherein in use, the plurality of switching elements are controllable to form one or more short circuits within the power electronic converter so as to define one or more primary current flow paths, the or each primary current flow path including a respective one of the AC networks and the power electronic converter and bypassing the DC network.