Abstract:
An advantageous method for treating the surface of a metallic substrate made of aluminum or an aluminum alloy, comprising the following steps: providing a water-based mixture with a sol, comprising alkoxy silanes of general chemical formula Si(OR)4 and organoalkoxy silanes of general chemical formula R″Si(OR′)3, in which R and R′ are linear or branched, short-chained hydrocarbon groups with at least one hydroxyl group and R″ is an organic group with a glycidoxy-, merkapto-, amino-, methacryl-, allyl- and/or vinyl-group, applying the mixture to the surface of the metallic substrate and at least in sections, hardening the mixture with a formation of a sol-gel coating connected to the metallic substate.
Abstract:
An aluminum alloy and a method for improving the ability of a semi-finished or finished product to age artificially, includes an age-hardenable aluminum alloy on an Al—Mg—Si, Al—Zn, Al—Zn—Mg or Al—Si—Mg basis, wherein the aluminum alloy is transformed to a solid solution state, in particular by solution heat treatment (1), is quenched and subsequently forms precipitations by a process of natural aging (3), the method involving at least one measure for reducing a negative effect of natural aging (3) of the aluminum alloy on artificial aging (4) thereof. In order to achieve advantageous method conditions, a measure for reducing the negative effect involves an addition of at least one alloy element which can be associated with quenched-in vacancies for the solid solution of the aluminum alloy with a proportion of under 500, in particular under 200, atomic ppm in the aluminum alloy, whereby the number of vacancies that are not associated with precipitations at the beginning of artificial aging (4) increases in order to reduce the negative effect of natural aging (3) of the aluminum alloy on the further artificial aging (4) thereof by mobilizing these unassociated vacancies.
Abstract:
An age-hardenable aluminum alloy on the basis of Al—Mg—Si, Al—Zn, Al—Zn—Mg or Al—Si—Mgv has precipitates caused by natural aging. The aluminum alloy has at least one alloy element, in addition to its main alloy element or in addition to its main alloy elements, which can be correlated with quenched-in empty spaces of the aluminum alloy, particularly reducing their mobility in the crystal lattice, at such a content less than 500, particularly less than 200 atomic ppm, that the aluminum alloy forms empty spaces essentially not correlated with these precipitates, in order to reduce the negative effect of natural aging of the aluminum alloy on its further artificial aging, by mobilization of these non-correlated empty spaces.
Abstract:
An advantageous method for treating the surface of a metallic substrate made of aluminum or an aluminum alloy, comprising the following steps: providing a water-based mixture with a sol, comprising alkoxy silanes of general chemical formula Si(OR)4 and organoalkoxy silanes of general chemical formula R″Si(OR′)3, in which R and R′ are linear or branched, short-chained hydrocarbon groups with at least one hydroxyl group and R″ is an organic group with a glycidoxy-, merkapto-, amino-, methacryl-, allyl- and/or vinyl-group, applying the mixture to the surface of the metallic substrate and at least in sections, hardening the mixture with a formation of a sol-gel coating connected to the metallic substrate.
Abstract:
An aluminum alloy and a method for improving the ability of a semi-finished or finished product to age artificially, includes an age-hardenable aluminum alloy on an Al—Mg—Si, Al—Zn, Al—Zn—Mg or Al—Si—Mg basis, wherein the aluminum alloy is transformed to a solid solution state, in particular by solution heat treatment (1), is quenched and subsequently forms precipitations by a process of natural aging (3), the method involving at least one measure for reducing a negative effect of natural aging (3) of the aluminum alloy on artificial aging (4) thereof. In order to achieve advantageous method conditions, a measure for reducing the negative effect involves an addition of at least one alloy element which can be associated with quenched-in vacancies for the solid solution of the aluminum alloy with a proportion of under 500, in particular under 200, atomic ppm in the aluminum alloy, whereby the number of vacancies that are not associated with precipitations at the beginning of artificial aging (4) increases in order to reduce the negative effect of natural aging (3) of the aluminum alloy on the further artificial aging (4) thereof by mobilizing these unassociated vacancies.