Abstract:
A particulate matter sensor and an exhaust gas purification system using the same are provided. A particular matter sensor according to some embodiments of the present invention includes a first insulation layer including a first electrode unit exposed on a first side thereof, which includes a plurality of first electrodes not electrically connected to each other, a second insulation layer arranged in parallel to the first insulation layer with a space therebetween, including a second electrode unit on a first side thereof, which includes a plurality of second electrodes electrically connected to each other, a temperature sensing unit formed on a first side of a third insulation layer located on a second side of the second insulation layer, and a heater unit formed on a first side of a fourth insulation layer located on a second side of the third insulation layer, the heater unit configured to heat the first and second electrode units. One of the first electrodes is configured to be electrically connected to a first electrical contact terminal. The second electrodes are electrically connected to a second electrical contact terminal. The first electrodes and the second electrodes are arranged respectively corresponding to each other. The first electrodes are configured to be electrically connected to each other by particulates deposited therebetween to allow capacitance between the first electrode and the second electrode to be changed.
Abstract:
A particulate matter sensor and an exhaust gas purification system using the same are provided. A particular matter sensor according to some embodiments of the present invention includes a first insulation layer including a first electrode unit exposed on a first side thereof, which includes a plurality of first electrodes not electrically connected to each other, a second insulation layer arranged in parallel to the first insulation layer with a space therebetween, including a second electrode unit on a first side thereof, which includes a plurality of second electrodes electrically connected to each other, a temperature sensing unit formed on a first side of a third insulation layer located on a second side of the second insulation layer, and a heater unit formed on a first side of a fourth insulation layer located on a second side of the third insulation layer, the heater unit configured to heat the first and second electrode units. One of the first electrodes is configured to be electrically connected to a first electrical contact terminal. The second electrodes are electrically connected to a second electrical contact terminal. The first electrodes and the second electrodes are arranged respectively corresponding to each other. The first electrodes are configured to be electrically connected to each other by particulates deposited therebetween to allow capacitance between the first electrode and the second electrode to be changed.