Abstract:
An electronic device may have a metal electromagnetic interference shielding enclosure. The enclosure may have a bottom wall, vertical sidewalls that extend upwards from the bottom wall, and a lid that covers the enclosure to define an interior cavity. Power supply components and other electrical components may be mounted within the interior cavity. A printed circuit board on which integrated circuits and other components are mounted may have an upper surface that faces the bottom wall of the enclosure and an opposing lower surface that faces a metal plate. Fence structures may be used to help shield components mounted on the printed circuit. Heat may be dissipated from components on the printed circuit into the bottom wall and into the metal plate. A plastic housing may be used to house the shielding enclosure, printed circuit board, components mounted on the printed circuit board, and the metal plate.
Abstract:
An electronic device may have a hard disk drive mounted diagonally within a housing. Electromagnetic interference shielding structures may enclose the hard disk drive. The shielding structures may include conductive elastomeric structures. A printed circuit board may be mounted diagonally in parallel with the hard disk drive. Connectors on the printed circuit board may be angled away from the printed circuit board at a non-zero angle and may be retained against the housing with a slide and lock connector retention member. An accelerometer may detect when the device is tipped over so that control circuitry may protect the hard disk drive. A fan may cause air to flow upwards on one side of the device and downwards on the other side of the device. The housing may rest on housing support structures with angled air vents and integral elastomeric feet.
Abstract:
An electronic device may have a hard disk drive mounted diagonally within a housing. Electromagnetic interference shielding structures may enclose the hard disk drive. The shielding structures may include conductive elastomeric structures. A printed circuit board may be mounted diagonally in parallel with the hard disk drive. Connectors on the printed circuit board may be angled away from the printed circuit board at a non-zero angle and may be retained against the housing with a slide and lock connector retention member. An accelerometer may detect when the device is tipped over so that control circuitry may protect the hard disk drive. A fan may cause air to flow upwards on one side of the device and downwards on the other side of the device. The housing may rest on housing support structures with angled air vents and integral elastomeric feet.
Abstract:
An electronic device may have a metal electromagnetic interference shielding enclosure. The enclosure may have a bottom wall, vertical sidewalls that extend upwards from the bottom wall, and a lid that covers the enclosure to define an interior cavity. Power supply components and other electrical components may be mounted within the interior cavity. A printed circuit board on which integrated circuits and other components are mounted may have an upper surface that faces the bottom wall of the enclosure and an opposing lower surface that faces a metal plate. Fence structures may be used to help shield components mounted on the printed circuit. Heat may be dissipated from components on the printed circuit into the bottom wall and into the metal plate. A plastic housing may be used to house the shielding enclosure, printed circuit board, components mounted on the printed circuit board, and the metal plate.
Abstract:
An electronic device may have a housing in which electrical components on a printed circuit board are mounted. A connector may be mounted to the edge of the printed circuit board using solder. The connector may have a threaded portion that protrudes through the housing. A threadless portion of the connector may be aligned with the housing. The connector may have a metal body member covered with a metal shell. The metal shell may have a portion that covers the electrical components and serves as an electromagnetic interference shield for the electrical components. The connector may have a threaded barrel. The threaded barrel may have a threaded outer portion with a diameter that is larger than a threaded inner portion. The threadless portion of the connector may lie between the threaded outer and inner portions.
Abstract:
An electronic device may have a hard disk drive mounted diagonally within a housing. Electromagnetic interference shielding structures may enclose the hard disk drive. The shielding structures may include conductive elastomeric structures. A printed circuit board may be mounted diagonally in parallel with the hard disk drive. Connectors on the printed circuit board may be angled away from the printed circuit board at a non-zero angle and may be retained against the housing with a slide and lock connector retention member. An accelerometer may detect when the device is tipped over so that control circuitry may protect the hard disk drive. A fan may cause air to flow upwards on one side of the device and downwards on the other side of the device. The housing may rest on housing support structures with angled air vents and integral elastomeric feet.
Abstract:
An electronic device may have a hard disk drive mounted diagonally within a housing. Electromagnetic interference shielding structures may enclose the hard disk drive. The shielding structures may include conductive elastomeric structures. A printed circuit board may be mounted diagonally in parallel with the hard disk drive. Connectors on the printed circuit board may be angled away from the printed circuit board at a non-zero angle and may be retained against the housing with a slide and lock connector retention member. An accelerometer may detect when the device is tipped over so that control circuitry may protect the hard disk drive. A fan may cause air to flow upwards on one side of the device and downwards on the other side of the device. The housing may rest on housing support structures with angled air vents and integral elastomeric feet.
Abstract:
An electronic device may have a housing in which electrical components on a printed circuit board are mounted. A connector may be mounted to the edge of the printed circuit board using solder. The connector may have a threaded portion that protrudes through the housing. A threadless portion of the connector may be aligned with the housing. The connector may have a metal body member covered with a metal shell. The metal shell may have a portion that covers the electrical components and serves as an electromagnetic interference shield for the electrical components. The connector may have a threaded barrel. The threaded barrel may have a threaded outer portion with a diameter that is larger than a threaded inner portion. The threadless portion of the connector may lie between the threaded outer and inner portions.